摘要:
Full volume encryption can be applied to volumes in a clustering environment. To simplify the maintenance of keys relevant to such encrypted volumes, a cluster key table construct can be utilized, where each entry of the cluster key table corresponds to an encrypted volume and comprises an identification of the encrypted volume and a key needed to access that volume. Keys can be protected by encrypting them with a key specific to each computing device storing the cluster key table. Updates can be propagated among the computing devices in the cluster by first decrypting the keys and then reencrypting them with a key specific to each computing device as they are stored on those computing devices. Access control requirements can also be added to the entries in the cluster key table. Alternative access control requirements can be accommodated by assigning multiple independent entries to a single encrypted volume.
摘要:
Full volume encryption can be applied to volumes in a clustering environment. To simplify the maintenance of keys relevant to such encrypted volumes, a cluster key table construct can be utilized, where each entry of the cluster key table corresponds to an encrypted volume and comprises an identification of the encrypted volume and a key needed to access that volume. Keys can be protected by encrypting them with a key specific to each computing device storing the cluster key table. Updates can be propagated among the computing devices in the cluster by first decrypting the keys and then reencrypting them with a key specific to each computing device as they are stored on those computing devices. Access control requirements can also be added to the entries in the cluster key table. Alternative access control requirements can be accommodated by assigning multiple independent entries to a single encrypted volume.
摘要:
Hardware encrypting storage devices can provide for hardware encryption of data being written to the storage media of such storage devices, and hardware decryption of data being read from that storage media. To utilize existing key management resources, which can be more flexible and accommodating, mechanisms for storing keys protected by the existing resources, but not the hardware encryption of the storage device, can be developed. Dedicated partitions that do not have corresponding encryption bands can be utilized to store keys in a non-hardware-encrypted manner. Likewise, partitions can be defined larger than their associated encryption bands, leaving room near the beginning and end for non-hardware encrypted storage. Or a separate bit can be used to individually specify which data should be hardware encrypted. Additionally automated processes can maintain synchronization between a partition table of the computing device and a band table of the hardware encrypting storage device.
摘要:
Hardware encrypting storage devices can provide for hardware encryption of data being written to the storage media of such storage devices, and hardware decryption of data being read from that storage media. To utilize existing key management resources, which can be more flexible and accommodating, mechanisms for storing keys protected by the existing resources, but not the hardware encryption of the storage device, can be developed. Dedicated partitions that do not have corresponding encryption bands can be utilized to store keys in a non-hardware-encrypted manner. Likewise, partitions can be defined larger than their associated encryption bands, leaving room near the beginning and end for non-hardware encrypted storage. Or a separate bit can be used to individually specify which data should be hardware encrypted. Additionally automated processes can maintain synchronization between a partition table of the computing device and a band table of the hardware encrypting storage device.
摘要:
Techniques for providing security policy for device data are described. In implementations, data on a device is stored in an encrypted form. To protect the encrypted data from being decrypted by an unauthorized entity, techniques enable a decryption key to be occluded if an attempt to gain unauthorized access to device data is detected. In implementations, a decryption key can be occluded in a variety of ways, such as by deleting the decryption key, overwriting the encryption key in memory, encrypting the encryption key, and so on. Embodiments enable an occluded decryption key to be recovered via a recovery experience. For example, a recovery experience can include an authentication procedure that requests a recovery password. If a correct recovery password is provided, the occluded decryption key can be provided.
摘要:
Techniques for providing security policy for device data are described. In implementations, data on a device is stored in an encrypted form. To protect the encrypted data from being decrypted by an unauthorized entity, techniques enable a decryption key to be occluded if an attempt to gain unauthorized access to device data is detected. In implementations, a decryption key can be occluded in a variety of ways, such as by deleting the decryption key, overwriting the encryption key in memory, encrypting the encryption key, and so on. Embodiments enable an occluded decryption key to be recovered via a recovery experience. For example, a recovery experience can include an authentication procedure that requests a recovery password. If a correct recovery password is provided, the occluded decryption key can be provided.
摘要:
A portable device may be roamed from one host to another. In one example, the portable device stores software that is to be executed by a host. The host may maintain a policy that governs which software may be executed on the host. When the portable device is connected to a host, the host checks the software version installed on the guest to determine whether that software version is compatible with the host's policy. If the guest's software does not comply with the host's policy, then the host installs a compatible version. If the guest's version complies with the policy and is newer than the host's version, then the host copies the guest's version to the host and propagates it to other guests. In this way, newer versions of software propagate between hosts and guests, while also respecting specific execution policies of the various hosts.
摘要:
In situations, such as disasters, where the physical protection of data may be compromised, algorithmic protection of such data can be increased in anticipation of the disaster. An off-site mechanism can send a disaster preparation script to computing devices expected to be affected, resulting in the deletion of decryption keys from those computing devices. Once the disaster passes, the off-site mechanism, upon receiving confirmation of the physical integrity of the computing devices, can return one or more decryption keys to the computing devices, enabling access algorithmically protected data. The off-site mechanism can also optionally provide access information that can be used to obtain access to the algorithmically protected data via at least one returned decryption key.
摘要:
A storage volume is encrypted using a particular encryption technique, the storage volume including an access application and one or more cover files. The access application can be executed by a computing device having an operating system lacking support for the particular encryption technique, and allows the computing device to access data on the storage volume encrypted using the particular encryption technique.
摘要:
In situations, such as disasters, where the physical protection of data may be compromised, algorithmic protection of such data can be increased in anticipation of the disaster. An off-site mechanism can send a disaster preparation script to computing devices expected to be affected, resulting in the deletion of decryption keys from those computing devices. Once the disaster passes, the off-site mechanism, upon receiving confirmation of the physical integrity of the computing devices, can return one or more decryption keys to the computing devices, enabling access algorithmically protected data. The off-site mechanism can also optionally provide access information that can be used to obtain access to the algorithmically protected data via at least one returned decryption key.