Abstract:
A system for controlling lighting includes a control module coupled to a driver, a light source coupled to the driver, a first sensor configured to cooperate with the control module to detect occupancy and control the power delivered to the light source according to a signal provided by the first sensor, and a second sensor configured to cooperate with the control module to detect ambient light and control the power delivered according to a signal provided by the second sensor. A GUI executing on a controller device wirelessly coupled to the control module communicates with the control module to configure the operation thereof, executes on a touch-sensitive display configured to facilitate user interaction with the controller, and creates one or more control groups. The GUI is also operable to control the driver to control the state of the light source. The control module is programmable to cause the driver to control the light source according to the detection by the first sensor of occupancy, turning it on upon detecting that an area is occupied and turning it off after a configurable delay period. The control module is programmable to cause the driver to control the light source according to the detection by the second sensor of ambient light. The system is configurable to include a switch to cause the light source to be turned on without regard to occupancy detected by the first sensor or ambient light detected by the second sensor.
Abstract:
A system for controlling lighting includes a control module coupled to a driver, a light source coupled to the driver, a first sensor configured to cooperate with the control module to detect occupancy and control the power delivered to the light source according to a signal provided by the first sensor, and a second sensor configured to cooperate with the control module to detect ambient light and control the power delivered according to a signal provided by the second sensor. A GUI executing on a controller device wirelessly coupled to the control module communicates with the control module to configure the operation thereof, executes on a touch-sensitive display configured to facilitate user interaction with the controller, and creates one or more control groups. The GUI is also operable to control the driver to control the state of the light source. The control module is programmable to cause the driver to control the light source according to the detection by the first sensor of occupancy, turning it on upon detecting that an area is occupied and turning it off after a configurable delay period. The control module is programmable to cause the driver to control the light source according to the detection by the second sensor of ambient light. The system is configurable to include a switch to cause the light source to be turned on without regard to occupancy detected by the first sensor or ambient light detected by the second sensor.
Abstract:
A system for controlling lighting includes a control module coupled to a driver, a light source coupled to the driver, a first sensor configured to cooperate with the control module to detect occupancy and control the power delivered to the light source according to a signal provided by the first sensor, and a second sensor configured to cooperate with the control module to detect ambient light and control the power delivered according to a signal provided by the second sensor. A GUI executing on a controller device wirelessly coupled to the control module communicates with the control module to configure the operation thereof, executes on a touch-sensitive display configured to facilitate user interaction with the controller, and creates one or more control groups. The GUI is also operable to control the driver to control the state of the light source. The control module is programmable to cause the driver to control the light source according to the detection by the first sensor of occupancy, turning it on upon detecting that an area is occupied and turning it off after a configurable delay period. The control module is programmable to cause the driver to control the light source according to the detection by the second sensor of ambient light. The system is configurable to include a switch to cause the light source to be turned on without regard to occupancy detected by the first sensor or ambient light detected by the second sensor.
Abstract:
A controller for controlling a plurality of lighting devices configured for wireless communications in a facility includes a data communications interface communicating with at least one of the devices. The controller further includes a control module configured to provide a control signal to the data communications interface for communicating to a transceiver associated with the device and for turning off the device according to an algorithm wherein the control signal is provided based on a time of day and/or a sensed condition relating to use of the facility. The transceiver reports device data to the control module to quantify a reduction in power obtained by controlling the devices according to the algorithm.
Abstract:
A lighting system for displacing energy is provided. The lighting system includes a light sensor to measure an amount of light provided from the natural lighting fixture to a building environment. The lighting system further includes processing electronics to receive information from the light sensor and to use the received information to determine when the amount of light provided from the natural lighting fixture is sufficient to allow one or more electric lighting fixtures to be turned off or dimmed, the processing electronics causing the one or more electric lighting fixtures to turn off or dim in response to the determination. The processing electronics are further configured to calculate the energy saved from turning off or dimming the one or more lighting fixtures. The lighting system further includes a communications interface configured to transmit the results of the calculation of energy saved from the processing electronics to a second party.
Abstract:
A method includes obtaining, at a metering device, power usage information associated with operation of a second technology; calculating, at a processor and based on the power usage information obtained from the metering device, a power base load capacity relief of an electrical system to a utility provider resulting from change from a first technology to the second technology; receiving, at the processor, a technology cost including fixed and variable costs to install and maintain the second technology; calculating, at the processor, a return needed for repayment of the technology cost; determining, by the processor, a new utility rate by apportioning the return needed for repayment of the technology cost as a function of the power base load capacity relief and calculating; and providing a utility invoice to the utility consumer for a power reduction over time at the new utility rate.
Abstract:
A controller for controlling a plurality of lighting devices configured for wireless communications in a facility includes a data communications interface communicating with at least one of the devices. The controller further includes a control module configured to provide a control signal to the data communications interface for communicating to a transceiver associated with the device and for turning off the device according to an algorithm wherein the control signal is provided based on a time of day and/or a sensed condition relating to use of the facility. The transceiver reports device data to the control module to quantify a reduction in power obtained by controlling the devices according to the algorithm.
Abstract:
A method of reducing electricity usage during peak demand periods includes the steps of establishing predetermined load reduction criteria representative of a desire by a power provider to reduce loading on an electricity supply grid, and coordinating with a facility having lighting equipment to permit the power provider to turn-off one or more of the lighting equipment by sending instructions to a master controller at the facility in response to the predetermined load reduction criteria, and establishing a list of lighting equipment to be turned-off in response to the instructions, and configuring the master controller to send an override control signal to the lighting equipment to implement the instructions, and configuring the lighting equipment to send a response signal to the master controller providing a status of the lighting equipment.
Abstract:
A lighting fixture system for fluorescent lamps includes one or more fluorescent lamps and one or more ballasts configured to provide controlled power to the one or more fluorescent lamps. The lighting fixture further includes a controller wired to the fluorescent lighting fixture. The controller includes one or more relays configured to turn power provided to the one or more ballasts on and off such that the one or more fluorescent lamps turn on and off with the switching of the one or more relays. The controller further includes a logic circuit configured to control the switching of the one or more relays, wherein the logic circuit is configured to log usage information for the fluorescent lighting fixture in memory. The controller yet further includes communications electronics configured to output the logged usage information.
Abstract:
A system for controlling lighting includes a control module coupled to a driver, a light source coupled to the driver, a first sensor configured to cooperate with the control module to detect occupancy and control the power delivered to the light source according to a signal provided by the first sensor, and a second sensor configured to cooperate with the control module to detect ambient light and control the power delivered according to a signal provided by the second sensor. A GUI executing on a controller device wirelessly coupled to the control module communicates with the control module to configure the operation thereof, executes on a touch-sensitive display configured to facilitate user interaction with the controller, and creates one or more control groups. The GUI is also operable to control the driver to control the state of the light source. The control module is programmable to cause the driver to control the light source according to the detection by the first sensor of occupancy, turning it on upon detecting that an area is occupied and turning it off after a configurable delay period. The control module is programmable to cause the driver to control the light source according to the detection by the second sensor of ambient light. The system is configurable to include a switch to cause the light source to be turned on without regard to occupancy detected by the first sensor or ambient light detected by the second sensor.