摘要:
A weighing sensor including a base (1) fixed to a housing, a load sensor (2) connected to the base in a displaceable manner via two arms (3, 4), a lever system (8 . . . 11) having at least one lever and transmitting the load acting on the load sensor to a transducer (12, 13), and a built-in calibration weight (40) which may be lowered onto a support region (30/38) for checking and/or calibrating the sensitivity of the weighing sensor. The support region is guided in a parallel manner by two additional arms (21, 22) and is connected to a lever (9/39) of the lever system (8 . . . 11) via a coupling element (26). Relatively large loads on the weighing sensor may be simulated with relatively small calibration weights, without the need for complicated lifting devices. The two additional arms (21, 22) are connected on the one hand to the support region (30/38) and on the other hand to the load sensor (2) and are located on the side of the load sensor (2) opposite from the lever system (8 . . . 11).
摘要:
A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block, and at least one spring connecting segment (36/35/38, 37/35′/39) of the flexural pivot (3) includes two spaced-apart thin material points (36, 38; 37, 39). In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.
摘要:
A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block by four horizontal parallel bores (31, 32, 33, 34) that are adjacently arranged in an annular manner in such a way as to respectively leave a thin connecting segment (36, 37, 38 39) between adjacent bores, and by additional slots. In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.
摘要:
A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block, and at least one spring connecting segment (36/35/38, 37/35′/39) of the flexural pivot (3) includes two spaced-apart thin material points (36, 38; 37, 39). In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.
摘要:
A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block by four horizontal parallel bores (31, 32, 33, 34) that are adjacently arranged in an annular manner in such a way as to respectively leave a thin connecting segment (36, 37, 38 39) between adjacent bores, and by additional slots. In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.
摘要:
A weighing system having a top pan balance with a divided upper guide (3a/3b) and a divided lower guide (4a, 4b) which cooperate to give a parallel guide, and link a load sensor (5) with a system support (2) that is mounted on the housing in a fixed manner. The weighing system has a translation lever which is rotatably mounted on the system support (2) by means of two flectors, the translation lever divided into two secondary levers (8a, 8b). Additionally, the weighing system includes a coupling element which is linked with the load sensor (5) and with a short lever arm of the translation lever. Flectors (7a, 7b) receiving the two secondary levers (8a,8b) are arranged adjacent the load sensor (5) and the rotational axis defined by the flectors (7a, 7b) extends through the load sensor (5).
摘要:
A weighing system that works on the principle of electromagnetic force compensation. The weighing system has two guide members (4′), which connect a load support (5′) to a base region fixed to the housing. The weighing system also has at least one transmission lever (6′), which is mounted on the base region. The base region is divided into two separate subregions (2′, 3′), the transmission lever (6′) extends between these two subregions. Two weighing systems are arranged laterally side by side and their base regions are interconnected in such a way that the two subregions (2, 3) of the base region of the one weighing system are connected to the two subregions (2′, 3′) of the base region of the other weighing system such that their positions are fixed relative to each other.
摘要:
A weighing system that operates according to the principle of electromagnetic force compensation, having two connecting rods (2, 3) which are fashioned as a parallel guide and connect a load receiver (4) to a base area (1) fixed to the housing, and having an angle lever (5) mounted on the base area. The force due to weight that is transmitted by the load receiver acts upon the short lever arm (5′) of the angle lever via a coupling element, and a coil projecting into the air gap of a permanent magnet system (7) is fastened to the long lever arm (5″). The weighing system occupies only a small area since the long lever arm takes the form of a vertical lever arm and extends, at least in part, in the area underneath the connecting rods of the parallel guide. The permanent magnet system is likewise arranged underneath the connecting rods of the parallel guide.
摘要:
A weighing system that works on the principle of electromagnetic force compensation. The weighing system has two guide members (4′), which connect a load support (5′) to a base region fixed to the housing. The weighing system also has at least one transmission lever (6′), which is mounted on the base region. The base region is divided into two separate subregions (2′, 3′), the transmission lever (6′) extends between these two subregions. Two weighing systems are arranged laterally side by side and their base regions are interconnected in such a way that the two subregions (2, 3) of the base region of the one weighing system are connected to the two subregions (2′, 3′) of the base region of the other weighing system such that their positions are fixed relative to each other.
摘要:
A weighing system that operates according to the principle of electromagnetic force compensation, having two connecting rods (2, 3) which are fashioned as a parallel guide and connect a load receiver (4) to a base area (1) fixed to the housing, and having an angle lever (5) mounted on the base area. The force due to weight that is transmitted by the load receiver acts upon the short lever arm (5′) of the angle lever via a coupling element, and a coil projecting into the air gap of a permanent magnet system (7) is fastened to the long lever arm (5″). The weighing system occupies only a small area since the long lever arm takes the form of a vertical lever arm and extends, at least in part, in the area underneath the connecting rods of the parallel guide and that the permanent magnet system is likewise arranged underneath the connecting rods of the parallel guide.