Weighing sensor with calibration weight
    1.
    发明授权
    Weighing sensor with calibration weight 有权
    带校准重量的称重传感器

    公开(公告)号:US06861593B2

    公开(公告)日:2005-03-01

    申请号:US10428949

    申请日:2003-05-05

    IPC分类号: G01G21/24 G01G23/01

    CPC分类号: G01G23/012 G01G21/244

    摘要: A weighing sensor including a base (1) fixed to a housing, a load sensor (2) connected to the base in a displaceable manner via two arms (3, 4), a lever system (8 . . . 11) having at least one lever and transmitting the load acting on the load sensor to a transducer (12, 13), and a built-in calibration weight (40) which may be lowered onto a support region (30/38) for checking and/or calibrating the sensitivity of the weighing sensor. The support region is guided in a parallel manner by two additional arms (21, 22) and is connected to a lever (9/39) of the lever system (8 . . . 11) via a coupling element (26). Relatively large loads on the weighing sensor may be simulated with relatively small calibration weights, without the need for complicated lifting devices. The two additional arms (21, 22) are connected on the one hand to the support region (30/38) and on the other hand to the load sensor (2) and are located on the side of the load sensor (2) opposite from the lever system (8 . . . 11).

    摘要翻译: 一种称重传感器,包括固定到壳体的基座(1),经由两个臂(3,4)以可移位方式连接到基座的负载传感器(2),至少具有至少 一个杠杆并将作用在负载传感器上的负载传递到换能器(12,13),以及内置的校准配重(40),其可以降低到支撑区域(30/38)上,用于检查和/或校准 称重传感器的灵敏度。 支撑区域通过两个附加臂(21,22)以平行的方式被引导,并且经由联接元件(26)连接到杠杆系统(8 ... 11)的杠杆(9/39)。 称重传感器上的相对较大的载荷可以用相对较小的校准砝码来模拟,而不需要复杂的提升装置。 两个附加臂(21,22)一方面连接到支撑区域(30/38),另一方面连接到负载传感器(2),并且位于负载传感器(2)的相反侧 从杠杆系统(8 ... 11)。

    Weighing system of monolithic construction including flexural pivot
    2.
    发明申请
    Weighing system of monolithic construction including flexural pivot 有权
    整体式结构称重系统包括弯头

    公开(公告)号:US20080029314A1

    公开(公告)日:2008-02-07

    申请号:US11882797

    申请日:2007-08-06

    IPC分类号: G01G3/00

    CPC分类号: G01G21/244

    摘要: A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block, and at least one spring connecting segment (36/35/38, 37/35′/39) of the flexural pivot (3) includes two spaced-apart thin material points (36, 38; 37, 39). In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.

    摘要翻译: 一种称重系统,其具有基部区域(1),平行引导的载荷接收器(4),至少一个传动杆(2),其通过至少一个弯曲枢轴(3)可枢转地安装在基部区域上, 元件(7),其将负载传感器连接到传动杆的短杆臂。 弯曲枢轴(3),传动杆(2)的至少一部分和基部区域(1')的至少一部分由块体整体地形成。 挠曲枢轴(3)与块的其余部分分离,并且挠性枢轴(3)的至少一个弹簧连接段(36/35/38,37 / 35'/ 39)包括两个间隔开的薄材料 (36,38; 37,39)。 以这种方式,可以创建无滞后的弯曲枢轴,而不需要单独的组件部件。

    Weighing system of monolithic construction including flexural pivot
    3.
    发明授权
    Weighing system of monolithic construction including flexural pivot 有权
    整体式结构称重系统包括弯头

    公开(公告)号:US07534971B2

    公开(公告)日:2009-05-19

    申请号:US11882798

    申请日:2007-08-06

    IPC分类号: G01G3/12 G01G7/00

    CPC分类号: G01G21/244

    摘要: A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block by four horizontal parallel bores (31, 32, 33, 34) that are adjacently arranged in an annular manner in such a way as to respectively leave a thin connecting segment (36, 37, 38 39) between adjacent bores, and by additional slots. In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.

    摘要翻译: 一种称重系统,其具有基部区域(1),平行引导的载荷接收器(4),至少一个传动杆(2),其通过至少一个弯曲枢轴(3)可枢转地安装在基部区域上, 元件(7),其将负载传感器连接到传动杆的短杆臂。 弯曲枢轴(3),传动杆(2)的至少一部分和基部区域(1')的至少一部分由块体整体地形成。 弯曲枢轴(3)通过四个水平平行的孔(31,32,33,34)与块体的其余部分分离,该水平平行孔(31,32,33,34)以环形方式相邻布置,以便分开留下薄的连接段(36 ,37,3839)和相邻的孔之间。 以这种方式,可以创建无滞后的弯曲枢轴,而不需要单独的组件部件。

    Weighing system of monolithic construction including flexural pivot
    4.
    发明授权
    Weighing system of monolithic construction including flexural pivot 有权
    整体式结构称重系统包括弯头

    公开(公告)号:US07495186B2

    公开(公告)日:2009-02-24

    申请号:US11882797

    申请日:2007-08-06

    IPC分类号: G01G21/24

    CPC分类号: G01G21/244

    摘要: A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block, and at least one spring connecting segment (36/35/38, 37/35′/39) of the flexural pivot (3) includes two spaced-apart thin material points (36, 38; 37, 39). In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.

    摘要翻译: 一种称重系统,其具有基部区域(1),平行引导的载荷接收器(4),至少一个传动杆(2),其通过至少一个弯曲枢轴(3)可枢转地安装在基部区域上, 元件(7),其将负载传感器连接到传动杆的短杆臂。 弯曲枢轴(3),传动杆(2)的至少一部分和基部区域(1')的至少一部分由块体整体地形成。 挠曲枢轴(3)与块的其余部分分离,并且挠性枢轴(3)的至少一个弹簧连接段(36/35/38,37 / 35'/ 39)包括两个间隔开的薄材料 (36,38; 37,39)。 以这种方式,可以创建无滞后的弯曲枢轴,而不需要单独的组装部件。

    Weighing system of monolithic construction including flexural pivot
    5.
    发明申请
    Weighing system of monolithic construction including flexural pivot 有权
    整体式结构称重系统包括弯头

    公开(公告)号:US20080029315A1

    公开(公告)日:2008-02-07

    申请号:US11882798

    申请日:2007-08-06

    IPC分类号: G01G3/00

    CPC分类号: G01G21/244

    摘要: A weighing system having a base region (1), a parallel-guided load receiver (4), at least one transmission lever (2) that is pivotably mounted on the base region via at least one flexural pivot (3), and a coupling element (7) that connects the load sensor to the short lever arm of the transmission lever. The flexural pivot (3), at least one part of the transmission lever (2), and at least one part of the base region (1′) are monolithically formed from a block. The flexural pivot (3) is separated from the rest of the block by four horizontal parallel bores (31, 32, 33, 34) that are adjacently arranged in an annular manner in such a way as to respectively leave a thin connecting segment (36, 37, 38 39) between adjacent bores, and by additional slots. In this way, a hysteresis-free flexural pivot can be created without the need for separate assembly components.

    摘要翻译: 一种称重系统,其具有基部区域(1),平行引导的载荷接收器(4),至少一个传动杆(2),其通过至少一个弯曲枢轴(3)可枢转地安装在基部区域上, 元件(7),其将负载传感器连接到传动杆的短杆臂。 弯曲枢轴(3),传动杆(2)的至少一部分和基部区域(1')的至少一部分由块体整体地形成。 弯曲枢轴(3)通过四个水平平行的孔(31,32,33,34)与块体的其余部分分离,该水平平行孔(31,32,33,34)以环形方式相邻布置,以便分开留下薄的连接段(36 ,37,3839)和相邻的孔之间。 以这种方式,可以创建无滞后的弯曲枢轴,而不需要单独的组件部件。

    Compact weighing system
    6.
    发明申请
    Compact weighing system 审中-公开
    紧凑称重系统

    公开(公告)号:US20060096790A1

    公开(公告)日:2006-05-11

    申请号:US11298699

    申请日:2005-12-12

    IPC分类号: G01G7/02

    CPC分类号: G01G21/244

    摘要: A weighing system having a top pan balance with a divided upper guide (3a/3b) and a divided lower guide (4a, 4b) which cooperate to give a parallel guide, and link a load sensor (5) with a system support (2) that is mounted on the housing in a fixed manner. The weighing system has a translation lever which is rotatably mounted on the system support (2) by means of two flectors, the translation lever divided into two secondary levers (8a, 8b). Additionally, the weighing system includes a coupling element which is linked with the load sensor (5) and with a short lever arm of the translation lever. Flectors (7a, 7b) receiving the two secondary levers (8a,8b) are arranged adjacent the load sensor (5) and the rotational axis defined by the flectors (7a, 7b) extends through the load sensor (5).

    摘要翻译: 一种具有顶部平衡的称重系统,具有分开的上部导向件(3a / 3b)和分开的下部导向件(4a,4b),所述下部导向件协同作用以产生平行导向件,并将负载传感器(5)与 以固定方式安装在外壳上的系统支架(2)。 称重系统具有平移杆,其通过两个反射器可旋转地安装在系统支撑件(2)上,所述平移杆被分成两个辅助杆(8a,8b)。 此外,称重系统包括与负载传感器(5)连接的联接元件和平移杆的短杠杆臂。 接收两个副杠杆(8a,8b)的反射器(7a,7b)布置在负载传感器(5)附近,并且由反射器(7a,7b)限定的旋转轴线延伸穿过负载传感器 5)。

    Narrow weighing system arranged in narrowly spaced rows in the lateral direction
    7.
    发明申请
    Narrow weighing system arranged in narrowly spaced rows in the lateral direction 有权
    狭窄的称重系统在横向方向上布置成狭窄间隔的行

    公开(公告)号:US20070034419A1

    公开(公告)日:2007-02-15

    申请号:US11584663

    申请日:2006-10-23

    IPC分类号: G01G19/08

    CPC分类号: G01G21/244 G01G7/04

    摘要: A weighing system that works on the principle of electromagnetic force compensation. The weighing system has two guide members (4′), which connect a load support (5′) to a base region fixed to the housing. The weighing system also has at least one transmission lever (6′), which is mounted on the base region. The base region is divided into two separate subregions (2′, 3′), the transmission lever (6′) extends between these two subregions. Two weighing systems are arranged laterally side by side and their base regions are interconnected in such a way that the two subregions (2, 3) of the base region of the one weighing system are connected to the two subregions (2′, 3′) of the base region of the other weighing system such that their positions are fixed relative to each other.

    摘要翻译: 一种以电磁力补偿原理工作的称重系统。 称重系统具有两个引导构件(4'),其将负载支撑件(5')连接到固定到壳体的基部区域。 称重系统还具有至少一个安装在基座区域上的传动杆(6')。 基部区域被分成两个分开的子区域(2',3'),传动杆(6')在这两个子区域之间延伸。 两个称重系统横向并排设置,并且它们的基部区域以这样的方式相互连接,使得一个称重系统的基部区域的两个子区域(2,3)连接到两个子区域(2',3') 的位置相对于彼此固定的另一个称重系统的基部区域。

    Weighing system having an angle lever with a long vertical lever arm
    8.
    发明授权
    Weighing system having an angle lever with a long vertical lever arm 有权
    称重系统具有带有长垂直杆臂的角度杆

    公开(公告)号:US07411138B2

    公开(公告)日:2008-08-12

    申请号:US11698977

    申请日:2007-01-29

    IPC分类号: G01G7/04

    CPC分类号: G01G7/02 G01G21/244

    摘要: A weighing system that operates according to the principle of electromagnetic force compensation, having two connecting rods (2, 3) which are fashioned as a parallel guide and connect a load receiver (4) to a base area (1) fixed to the housing, and having an angle lever (5) mounted on the base area. The force due to weight that is transmitted by the load receiver acts upon the short lever arm (5′) of the angle lever via a coupling element, and a coil projecting into the air gap of a permanent magnet system (7) is fastened to the long lever arm (5″). The weighing system occupies only a small area since the long lever arm takes the form of a vertical lever arm and extends, at least in part, in the area underneath the connecting rods of the parallel guide. The permanent magnet system is likewise arranged underneath the connecting rods of the parallel guide.

    摘要翻译: 一种根据电磁力补偿原理操作的称重系统,具有两个连接杆(2,3),它们被形成为平行导向件并将负载接收器(4)连接到固定到壳体上的基座区域(1) 并具有安装在基座区域上的角度杆(5)。 由负载接收器传递的由重量引起的力通过联接元件作用在角度杆的短杠杆臂(5')上,并且突出到永磁体系统(7)的气隙中的线圈被紧固到 长杠杆臂(5“)。 称重系统仅占用较小的区域,因为长杆臂采用垂直杆臂的形式,并且至少部分地延伸在平行导轨的连接杆下方的区域中。 永久磁铁系统同样布置在平行导轨的连接杆的下方。

    Narrow weighing system arranged in narrowly spaced rows in the lateral direction
    9.
    发明授权
    Narrow weighing system arranged in narrowly spaced rows in the lateral direction 有权
    狭窄的称重系统在横向方向上布置成狭窄间隔的行

    公开(公告)号:US07501592B2

    公开(公告)日:2009-03-10

    申请号:US11584663

    申请日:2006-10-23

    IPC分类号: G01G7/04

    CPC分类号: G01G21/244 G01G7/04

    摘要: A weighing system that works on the principle of electromagnetic force compensation. The weighing system has two guide members (4′), which connect a load support (5′) to a base region fixed to the housing. The weighing system also has at least one transmission lever (6′), which is mounted on the base region. The base region is divided into two separate subregions (2′, 3′), the transmission lever (6′) extends between these two subregions. Two weighing systems are arranged laterally side by side and their base regions are interconnected in such a way that the two subregions (2, 3) of the base region of the one weighing system are connected to the two subregions (2′, 3′) of the base region of the other weighing system such that their positions are fixed relative to each other.

    摘要翻译: 一种以电磁力补偿原理工作的称重系统。 称重系统具有两个引导构件(4'),其将负载支撑件(5')连接到固定到壳体的基部区域。 称重系统还具有至少一个安装在基座区域上的传动杆(6')。 基部区域分成两个分开的子区域(2',3'),传动杆(6')在这两个子区域之间延伸。 两个称重系统横向并排设置,并且它们的基部区域以这样的方式相互连接,使得一个称重系统的基部区域的两个子区域(2,3)连接到两个子区域(2',3') 的位置相对于彼此固定的另一个称重系统的基部区域。

    Weighing system that operates according to the principle of electromagnetic force compensation
    10.
    发明申请
    Weighing system that operates according to the principle of electromagnetic force compensation 有权
    按照电磁力补偿原理运行的称重系统

    公开(公告)号:US20070193788A1

    公开(公告)日:2007-08-23

    申请号:US11698977

    申请日:2007-01-29

    IPC分类号: G01G7/00 G01G1/38

    CPC分类号: G01G7/02 G01G21/244

    摘要: A weighing system that operates according to the principle of electromagnetic force compensation, having two connecting rods (2, 3) which are fashioned as a parallel guide and connect a load receiver (4) to a base area (1) fixed to the housing, and having an angle lever (5) mounted on the base area. The force due to weight that is transmitted by the load receiver acts upon the short lever arm (5′) of the angle lever via a coupling element, and a coil projecting into the air gap of a permanent magnet system (7) is fastened to the long lever arm (5″). The weighing system occupies only a small area since the long lever arm takes the form of a vertical lever arm and extends, at least in part, in the area underneath the connecting rods of the parallel guide and that the permanent magnet system is likewise arranged underneath the connecting rods of the parallel guide.

    摘要翻译: 一种根据电磁力补偿原理操作的称重系统,具有两个连接杆(2,3),它们被形成为平行导向件并将负载接收器(4)连接到固定到壳体上的基座区域(1) 并具有安装在基座区域上的角度杆(5)。 由负载接收器传递的由重量引起的力通过联接元件作用在角杠杆的短杠杆臂(5')上,并且突出到永磁体系统(7)的气隙中的线圈被紧固到 长杠杆臂(5“)。 称重系统仅占用较小的区域,因为长杠杆臂呈垂直杆臂的形式,至少部分地延伸在平行导轨的连接杆下方的区域中,并且永久磁铁系统同样布置在下面 平行导轨的连杆。