Abstract:
Various systems and methods are provided that integrate data from disparate sources to identify shipment misalignments and display such information in interactive user interfaces. For example, the systems described herein can define various geographic regions using location and census data and identify the defined geographic regions in which stores are located. Using shipment data and micro-market data, the systems described herein can then identify the geographic regions that items are shipped to, identify the demand for such items in the geographic regions, and determine whether the quantity of items shipped to the geographic regions is appropriate based on the demand. Such information can be displayed in an interactive user interface that allows a user to view the geographic clustering of item demand, identify potential opportunities for correcting shipment misalignment, and/or correct identified shipment misalignments.
Abstract:
Approaches for determining a potential merchant breach are described. A system can acquire card transaction data from one or more sources such as merchants or financial institutions, in some instances at a predetermined time interval. Cards associated with the card transaction data can be analyzed to determine the health of a particular card, including the likelihood that the particular card has been compromised. A set of cards are accumulated, and their associated health data is stored. Based on the information obtained from a source, and the health associated with a set of cards, a potential date where a merchant was breached can be determined and fraudulent purchases can be prevented.
Abstract:
Various systems and methods are provided that integrate data from disparate sources to identify shipment misalignments and display such information in interactive user interfaces. For example, the systems described herein can define various geographic regions using location and census data and identify the defined geographic regions in which stores are located. Using shipment data and micro-market data, the systems described herein can then identify the geographic regions that items are shipped to, identify the demand for such items in the geographic regions, and determine whether the quantity of items shipped to the geographic regions is appropriate based on the demand. Such information can be displayed in an interactive user interface that allows a user to view the geographic clustering of item demand, identify potential opportunities for correcting shipment misalignment, and/or correct identified shipment misalignments.
Abstract:
An interactive user interface for receiving and displaying data is described. The interactive user interface may display data sets from a plurality of external applications and/or data sources. Received data sets may be compiled to form an interactive graphical unit, also called a “card,” that may be displayed in a format based upon that of the native external application of the received data sets. Cards may be grouped with other cards. A card may include a link which allows users to access the native external application of the card to make any desired modifications or changes.
Abstract:
Systems and techniques for indexing and/or querying a database are described herein. Multiple, large disparate data sources may be processed to cleanse and/or combine item data and/or item metadata. Further, attributes may be extracted from the item data sources. The interactive user interfaces allow a user to select one or more attributes and/or other parameters to present visualizations based on the processed data.
Abstract:
Systems and techniques for indexing and/or querying a database are described herein. Multiple, large disparate data sources may be processed to cleanse and/or combine item data and/or item metadata. Further, attributes may be extracted from the item data sources. The interactive user interfaces allow a user to select one or more attributes and/or other parameters to present visualizations based on the processed data.
Abstract:
Systems and techniques for indexing and/or querying a database are described herein. Multiple, large disparate data sources may be processed to cleanse and/or combine item data and/or item metadata. Further, attributes may be extracted from the item data sources. The interactive user interfaces allow a user to select one or more attributes and/or other parameters to present visualizations based on the processed data.
Abstract:
Systems and techniques for indexing and/or querying a database are described herein. Multiple, large disparate data sources may be processed to cleanse and/or combine item data and/or item metadata. Further, attributes may be extracted from the item data sources. The interactive user interfaces allow a user to select one or more attributes and/or other parameters to present visualizations based on the processed data.
Abstract:
An interactive user interface for receiving and displaying data is described. The interactive user interface may display data sets from a plurality of external applications and/or data sources. Received data sets may be compiled to form an interactive graphical unit, also called a “card,” that may be displayed in a format based upon that of the native external application of the received data sets. Cards may be grouped with other cards. A card may include a link which allows users to access the native external application of the card to make any desired modifications or changes.
Abstract:
An interactive user interface for receiving and displaying data is described. The interactive user interface may display data sets from a plurality of external applications and/or data sources. Received data sets may be compiled to form an interactive graphical unit, also called a “card,” that may be displayed in a format based upon that of the native external application of the received data sets. Cards may be grouped with other cards. A card may include a link which allows users to access the native external application of the card to make any desired modifications or changes.