摘要:
A switching power converter converts an input DC voltage to an output DC voltage using a switch to selectively connect an input DC voltage energy source. A switching controller controls the switch. A pulse width modulation centering signal is generated by a spread spectrum clock signal generator. An error amplifier of the switching controller generates an analog error signal based on a switching voltage measured after the switching of the switching power converter, the output voltage of the switching power converter, the pulse width modulation centering signal and a reference. A pulse width modulated signal generator generates the pulse width modulation signal to control the switch of the switching power converter based on the pulse width modulation centering signal and the analog error signal.
摘要:
A switching power converter converts an input DC voltage to an output DC voltage using a switch to selectively connect an input DC voltage energy source. A switching controller controls the switch. A pulse width modulation centering signal is generated by a spread spectrum clock signal generator. An error amplifier of the switching controller generates an analog error signal based on a switching voltage measured after the switching of the switching power converter, the output voltage of the switching power converter, the pulse width modulation centering signal and a reference. A pulse width modulated signal generator generates the pulse width modulation signal to control the switch of the switching power converter based on the pulse width modulation centering signal and the analog error signal.
摘要:
Embodiments of RF power amplifiers are disclosed that include switched-mode power amplifiers supplied by synchrnous buck DC-DC converters. The switched-mode power amplifiers can be used to amplify a limited form of an RF input signal and the supply to the switched-mode power amplifier is varied in response to the envelope of the RF input signal. One embodiment includes a switched-mode power amplifier connected to a synchronous buck DC-DC converter.
摘要:
DC-DC converters are disclosed that can be integrated onto a semiconductor device. In one embodiment, the invention includes a first MOSFET and a second MOSFET, where the drain of the first MOSFET forms a common node with the drain of the second MOSFET. In addition, a controller is connected to the gates of each of the MOSFETS and a passive filter is connected between the common node and ground. A load is also connected between the common node and ground and feedback circuitry is connected between the common node and the controller.
摘要:
A monolithically formed battery charger may be fabricated as an integral part of a multifunctional integrated circuit or as independent monolithically formed integrated circuit. The monolithically formed battery charger includes at least one step-down converter having a given duty ratio coupled to a battery-terminal interface that provides a stepped-down output voltage and current that may be used to charge a rechargeable battery. The step-down converter includes one or more cascaded monolithically-formed synchronous-buck regulators operating at a frequency of at least one megahertz. Each regulator may include a capacitor, inductor, controller, switch, and rectifier. When cascaded, the high-side output node of a preceding synchronous-buck regulator is connected to the switch in a successive synchronous-buck regulator.
摘要:
Embodiments of RF power amplifiers are disclosed that include switched-mode power amplifiers supplied by synchronous buck DC-DC converters. The switched-mode power amplifiers can be used to amplify a limited form of an RF input signal and the supply to the switched-mode power amplifier is varied in response to the envelope of the RF input signal. One embodiment includes a switched-mode power amplifier connected to a synchronous buck DC-DC converter.
摘要:
DC-DC converters are disclosed that can be integrated onto a semiconductor device. In one embodiment, the invention includes a first MOSFET and a second MOSFET, where the drain of the first MOSFET forms a common node with the drain of the second MOSFET. In addition, a controller is connected to the gates of each of the MOSFETS and a passive filter is connected between the common node and ground. A load is also connected between the common node and ground and feedback circuitry is connected between the common node and the controller.