Abstract:
In a hydrogen producing device, an electrolyte flow path between a plurality of hydrogen producing cells is disposed in a hydrogen production side and in an oxygen production side, separately. Further, an electrolyte flow path is formed through which the electrolyte flows downward from the top between the plurality of hydrogen producing cells, and on the other hand the electrolyte flows upward from the bottom within each hydrogen producing cell. Moreover, a contact point with a produced gas or an atmosphere is provided in a pathway of the electrolyte flow path.
Abstract:
Provided is a method for generating hydrogen. The method comprising (a) preparing a hydrogen generation device comprising a container, a photo-semiconductor electrode comprising a substrate, a light-blocking first conductive layer, and a first semiconductor photocatalyst layer, a counter electrode, a conductive wire for electrically connecting the first conductive layer to the counter electrode, and a liquid stored in the container, and (b) irradiating the first semiconductor photocatalyst layer with light to generate hydrogen on the counter electrode. The first conductive layer is interposed between the substrate and the first semiconductor photocatalyst layer. At least a part of the first semiconductor photocatalyst layer is in contact with the liquid. At least a part of the counter electrode is in contact with the liquid. The liquid is selected from the group consisting of an electrolyte aqueous solution and water. The substrate is formed of a resin.
Abstract:
In a hydrogen producing device, an electrolyte flow path between a plurality of hydrogen producing cells is disposed in a hydrogen production side and in an oxygen production side, separately. Further, an electrolyte flow path is formed through which the electrolyte flows downward from the top between the plurality of hydrogen producing cells, and on the other hand the electrolyte flows upward from the bottom within each hydrogen producing cell. Moreover, a contact point with a produced gas or an atmosphere is provided in a pathway of the electrolyte flow path.
Abstract:
Provided is a semiconductor photoelectrode comprising a first conductive layer; a first n-type semiconductor layer disposed on the first conductive layer; and a second conductive layer covering the first n-type semiconductor layer. The first n-type semiconductor layer has a first n-type surface region and a second n-type surface region. The first n-type surface region is in contact with the first conductive layer. The second n-type surface region is in contact with the second conductive layer. The first n-type semiconductor layer is formed of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. The second conductive layer is light-transmissive. The second conductive layer is formed of a p-type oxide conductor.