High resolution timing advance estimation based on PRACH

    公开(公告)号:US12213092B2

    公开(公告)日:2025-01-28

    申请号:US17494335

    申请日:2021-10-05

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n) having a predetermined sampling frequency and a predetermined length; correlating a down sampled version of the received preamble with a reference preamble sequence c(n) using an FFT method to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance at a resolution of 24Ts; zero padding sequences Y(k) and C(k) so that they have a predetermined length resulting in sequences Y_hat(k) and C_hat(k), which are 1024-point FFT of y(n) and c(n); performing a maximum likelihood estimation (MLE) to estimate a timing offset; and detecting a peak value out of the R_hat(m) and using a corresponding index Q to provide a timing advance with an accuracy of 2Ts.

    High Resolution Timing Advance Estimation Based on PRACH

    公开(公告)号:US20220030535A1

    公开(公告)日:2022-01-27

    申请号:US17494335

    申请日:2021-10-05

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n) having a predetermined sampling frequency and a predetermined length; correlating a down sampled version of the received preamble with a reference preamble sequence c(n) using an FFT method to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance at a resolution of 24 Ts; zero padding sequences Y(k) and C(k) so that they have a predetermined length resulting in sequences Y_hat(k) and C_hat(k), which are 1024-point FFT of y(n) and c(n); performing a maximum likelihood estimation (MLE) to estimate a timing offset; and detecting a peak value out of the R_hat(m) and using a corresponding index Q to provide a timing advance with an accuracy of 2 Ts.

    High Resolution Timing Advance Estimation Based on PRACH and Sparse IFFT Algorithm for LTE PRACH

    公开(公告)号:US20200099565A1

    公开(公告)日:2020-03-26

    申请号:US16582811

    申请日:2019-09-25

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n); performing signal conditioning on r(n); down sampling the signal and performing antialiasing filtering to provide a y(n) signal; correlating y(n) with a reference preamble with a reference preamble sequence c(n) to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance; constructing a sequence s(n) by segmenting r_centered(n) for length L around an index P*24; performing time domain interpolation of c(n) around index P to obtain a sequence c_interpolated(n); performing time domain interpolation between sequences s(n) and c_interpolated(n); detecting a peak position Q of the correlation; and deriving TA as P*24−L/2+q in terms of Ts.

    High resolution timing advance estimation based on PRACH and sparse IFFT algorithm for LTE PRACH

    公开(公告)号:US11102044B2

    公开(公告)日:2021-08-24

    申请号:US16582811

    申请日:2019-09-25

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n); performing signal conditioning on r(n); down sampling the signal and performing antialiasing filtering to provide a y(n) signal; correlating y(n) with a reference preamble with a reference preamble sequence c(n) to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance; constructing a sequence s(n) by segmenting r_centered(n) for length L around an index P*24; performing time domain interpolation of c(n) around index P to obtain a sequence c_interpolated(n); performing time domain interpolation between sequences s(n) and c_interpolated(n); detecting a peak position Q of the correlation; and deriving TA as P*24−L/2+q in terms of Ts.

    High resolution timing advance estimation based on PRACH

    公开(公告)号:US11140647B2

    公开(公告)日:2021-10-05

    申请号:US16576369

    申请日:2019-09-19

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n) having a predetermined sampling frequency and a predetermined length; correlating a down sampled version of the received preamble with a reference preamble sequence c(n) using an FFT method to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance at a resolution of 24Ts; zero padding sequences Y(k) and C(k) so that they have a predetermined length resulting in sequences Y_hat(k) and C_hat(k), which are 1024-point FFT of y(n) and c(n); performing a maximum likelihood estimation (MLE) to estimate a timing offset; and detecting a peak value out of the R_hat(m) and using a corresponding index Q to provide a timing advance with an accuracy of 2Ts.

    High Resolution Timing Advance Estimation Based on PRACH

    公开(公告)号:US20200092835A1

    公开(公告)日:2020-03-19

    申请号:US16576369

    申请日:2019-09-19

    Abstract: Systems, methods and computer software are disclosed for providing high resolution timing advance estimation based on Physical Random Access Channel (PRACH). An example method includes receiving a preamble signal r(n) having a predetermined sampling frequency and a predetermined length; correlating a down sampled version of the received preamble with a reference preamble sequence c(n) using an FFT method to provide correlation output Ryc; using a peak value P of the correlation output Ryc to detect a preamble ID and a timing advance at a resolution of 24Ts; zero padding sequences Y(k) and C(k) so that they have a predetermined length resulting in sequences Y_hat(k) and C_hat(k), which are 1024-point FFT of y(n) and c(n); performing a maximum likelihood estimation (MLE) to estimate a timing offset; and detecting a peak value out of the R_hat(m) and using a corresponding index Q to provide a timing advance with an accuracy of 2Ts.

Patent Agency Ranking