Abstract:
A method is disclosed for transmitting a multi-channel data stream comprising frames comprising a plurality of channels, the transmitting being done via a multi-transport tunnel from a first tunnel end-point to a second tunnel end-point, the multi-transport tunnel implementing at least one first carrier supporting a transport protocol with acknowledgement and at least one second carrier supporting a transport protocol without acknowledgement.More specifically, the invention proposes to introduce a delay in the sending of data ( >) via the first carrier as compared with the sending of data ( >) via the second carrier. Thus the invention guarantees the order of arrival of channels that are associated with a same piece of synchronization but are transmitted on distinct first and second carriers and come from the separation of a same multi-channel data frame.
Abstract:
In order to parameterize, within a communication network, a bridge to be put in communication with at least one element to be connected to said bridge, said bridge comprising at least one created port, a parameter representing a predetermined waiting period and corresponding to a time for detection by said bridge, during a phase of listening to the data received by said at least one created port, of the presence of any communication loop within said network, is determined; a filtering of said at least one created port is activated, said filtering being adapted to prevent the sending and reception by said at least one created port of inter-bridge management messages; the bridge is configured with said parameter thus determined; a new port of said bridge is created with a view to setting up communication with said at least one element; and said filtering is deactivated.
Abstract:
In order to parameterize, within a communication network, a bridge to be put in communication with at least one element to be connected to the bridge, the bridge comprising at least one created port, a parameter representing a predetermined waiting period and corresponding to a time for detection by the bridge, during a phase of listening to the data received by the at least one created port, of the presence of any communication loop within the network, is determined. A filtering of the at least one created port is activated, the filtering being adapted to prevent the sending and reception by the at least one created port of inter-bridge management messages. The bridge is configured with the parameter thus determined, a new port of the bridge is created with a view to setting up communication with the at least one element, and the filtering is deactivated.
Abstract:
A method is proposed for providing a remedy to the problem of address conflict when setting up a communications tunnel between a first tunnel end-point of a first communications sub-network and a second tunnel end-point of a second communications sub-network distinct from said first sub-network, in proposing an efficient method for the dynamic management of the address spaces of each sub-network, implemented by a tunnel end-point upon detection of a request for linking two sub-networks by a tunnel.
Abstract:
Data of a stream to be stimulated is transmitted from a sender device to a receiver device through a network segment. An input device of the network segment determines a starting packet in transit (packets transmitted but not yet acknowledged by the receiver device), selects, as a function of a consumption of a target bandwidth for the stream, packets of the stream following the starting packet, temporarily stores selected packets received from the sender device, transmits to the sender device an anticipated positive acknowledgement message for each selected packet on behalf of the receiver device, transmits the selected packets to the receiver device, and discards stored selected packets corresponding to positive acknowledgements of transmitted selected packets.
Abstract:
A method is proposed for providing a remedy to the problem of address conflict when setting up a communications tunnel between a first tunnel end-point of a first communications sub-network and a second tunnel end-point of a second communications sub-network distinct from said first sub-network, in proposing an efficient method for the dynamic management of the address spaces of each sub-network, implemented by a tunnel end-point upon detection of a request for linking two sub-networks by a tunnel.
Abstract:
A method is proposed for transmitting a multi-channel data stream comprising frames comprising a plurality of channels, the transmitting being done through a multi-transport tunnel from a first tunnel end-point to a second tunnel end-point, the multi-transport tunnel implementing a first carrier supporting a transport protocol with acknowledgement and a second carrier supporting a transport protocol without acknowledgement.The invention aims more specifically at averting or limiting the phenomena of interruptions in the rendering of a multi-channel stream in transit on a tunnel, and more particularly at providing a transport technique enabling regular and uninterrupted delivery of the multi-channel stream while at the same time reducing the memory resources needed at reception.
Abstract:
A method is proposed for transmitting packets of a two-way passenger data stream set up between first and second terminal devices. The passenger stream is compliant with a passenger transport protocol with acknowledgement defining a plurality of packet categories, and is intended to be encapsulated by a manager device according to an encapsulating transport protocol with acknowledgement. The manager device obtains a packet of the passenger stream transmitted from the first terminal device to the second terminal device, makes a first check to see if the packet obtained belongs to at least one predetermined category among the plurality of packet categories and, in the event that the first check is positive, encapsulates at least one part of the data of the obtained packet according to an encapsulating transport protocol without acknowledgement.
Abstract:
A method is disclosed for transmitting a multi-channel data stream comprising frames comprising a plurality of channels, the transmitting being done via a multi-transport tunnel from a first tunnel end-point to a second tunnel end-point, the multi-transport tunnel implementing at least one first carrier supporting a transport protocol with acknowledgement and at least one second carrier supporting a transport protocol without acknowledgement.More specifically, the invention proposes to introduce a delay in the sending of data ( >) via the first carrier as compared with the sending of data ( >) via the second carrier. Thus the invention guarantees the order of arrival of channels that are associated with a same piece of synchronization but are transmitted on distinct first and second carriers and come from the separation of a same multi-channel data frame.
Abstract:
A method is proposed for managing a transmission of data streams on a transport channel of a tunnel, the transmission of each stream being performed on the transport channel according to a transport protocol scheduled by packets and with acknowledgment, the tunnel being implemented between a first and a second tunnel end-point connected respectively to a first and a second sub-network, each stream being transmitted from a sender device to a receiver device, one device among the sender device and the receiver device being connected to the first sub-network and the other to the second sub-network. The method is performed by the first tunnel end-point and comprises the following steps: detecting a loss of packet on the transport channel of the tunnel; identifying at least one stream having at least one packet blocked on the transport channel of the tunnel by the loss; for at least one identified stream, generating and transmitting at least one acknowledgment to the sender device that has transmitted, on the tunnel, a packet blocked by said loss.