Method and system of multivariate analysis on normalized volume-wise data in the sinogram domain for improved quality in positron emission tomography studies
    1.
    发明授权
    Method and system of multivariate analysis on normalized volume-wise data in the sinogram domain for improved quality in positron emission tomography studies 失效
    正电子发射断层扫描研究中提高质量的正弦图域中的归一化体积数据的多变量分析方法和系统

    公开(公告)号:US08175360B2

    公开(公告)日:2012-05-08

    申请号:US12065140

    申请日:2006-08-31

    IPC分类号: G06K9/00

    摘要: A method and system are provided for improving the quality in positron emission tomography (PET) images. PET input data is masked using raw dynamic PET data (sinograms) as input for primary component analysis (PCA) that generates primary components which in turn are used to create a mask. This mask can be used to allow object pixel data to be extracted from the sinograms into masked sinograms where background pixels outside the reference object are set to zero. A volume-wise approach to PCA uses masked sinograms as input data. Pixel-wise noise pre-normalization may then be performed generating pre-normalized sinograms from the masked PET input data. PCA is then performed on the pre-normalized sinograms resulting in PCA sinograms recreated into PCA-modified sinograms by adding background pixel values of zero. These PCA-modified sinograms may optionally be scaled and may then be reconstructed into dynamic PET images with improved image quality.

    摘要翻译: 提供了一种提高正电子发射断层摄影(PET)图像质量的方法和系统。 PET输入数据使用原始动态PET数据(正弦图)作为主要成分分析(PCA)的输入进行掩蔽,主成分分析(PCA)产生主要成分,而主成分又用于创建掩模。 该掩模可以用于允许将对象像素数据从正弦图提取到被引用对象外部的背景像素设置为零的掩蔽的正弦图。 PCA使用屏蔽的正弦图作为输入数据。 然后可以从掩蔽的PET输入数据生成预标准化的正弦图像素像噪声预归一化。 然后在预标准化的正弦图上进行PCA,通过添加零的背景像素值,将PCA正弦图重新创建成PCA修正的正弦图。 这些PCA修改的正弦图可以可选地被缩放,然后可以被重建成具有改善的图像质量的动态PET图像。

    Method and System of Multivariate Analysis on Volume-Wise Data of Reference Structure Normalized Images for Improved Quality in Positron Emission Tomography Studies
    2.
    发明申请
    Method and System of Multivariate Analysis on Volume-Wise Data of Reference Structure Normalized Images for Improved Quality in Positron Emission Tomography Studies 失效
    参考结构体积智慧数据多元分析方法与系统正电子图像质量正电子发射断层扫描研究

    公开(公告)号:US20080279436A1

    公开(公告)日:2008-11-13

    申请号:US12065119

    申请日:2006-08-31

    IPC分类号: G06K9/00

    摘要: A method and system are provided to mask out the background in dynamic PET images, to perform pre-normalization on the masked dynamic PET images, and to apply multivariate image analysis (e.g., principal component analysis PCA) on the masked pre-normalized dynamic PET images in order to improve the quality of the dynamic PET images and the PET study. A masking operation applies PCA to untreated dynamic PEET images before any pre-normalization in order to mask out the background pixels. This masking operation uses the Otsu method. A first normalization method is background noise pre-normalization where pixel values are corrected for background noise. A second normalization method is kinetic pre-normalization where the contrast within an image is improved. Multivariate analysis such as PCA may be applied on the whole volume to find the largest variance in the structure.

    摘要翻译: 提供了一种方法和系统来掩盖动态PET图像中的背景,对掩蔽的动态PET图像执行预归一化,并将多变量图像分析(例如主成分分析PCA)应用于掩蔽的预标准化动态PET 图像以提高动态PET图像和PET研究的质量。 屏蔽操作在任何预归一化之前将PCA应用于未处理的动态PEET图像,以便屏蔽背景像素。 该掩蔽操作使用Otsu方法。 第一归一化方法是对背景噪声校正像素值的背景噪声预归一化。 第二种归一化方法是动态预归一化,其中图像内的对比度得到改善。 多变量分析如PCA可以应用在整个体积上,以找出结构中最大的变化。

    METHOD AND SYSTEM OF MULTIVARIATE ANALYSIS ON SLICE-WISE DATA OF REFERENCE STRUCTURE NORMALIZED IMAGES FOR IMPROVED QUALITY IN POSITRON EMISSION TOMOGRAPHY STUDIES
    3.
    发明申请
    METHOD AND SYSTEM OF MULTIVARIATE ANALYSIS ON SLICE-WISE DATA OF REFERENCE STRUCTURE NORMALIZED IMAGES FOR IMPROVED QUALITY IN POSITRON EMISSION TOMOGRAPHY STUDIES 审中-公开
    多尺度分析数据的方法和系统对参考结构的正确化图像的数据进行改进,以提高排放质量的位置图像研究

    公开(公告)号:US20090074279A1

    公开(公告)日:2009-03-19

    申请号:US12065111

    申请日:2006-08-31

    IPC分类号: G06K9/00

    摘要: A method and system are provided for improving the quality in positron emission tomography (PET) images. Image quality may be improved by pre-normalizing dynamic PET images and then applying a multivariate analysis tool on the images to generate improved quality dynamic PET images. The dynamic PET images are the images reconstructed from the raw dynamic PET data in the image domain of the PET study. A first normalization method is a data treatment (also referred to as noise pre-normalization) for the negative values that may result from the image reconstruction and/or from random variations in detector readings. A second normalization method is background noise pre-normalization where background pixel values are masked. A third normalization method is kinetic pre-normalization where the contrast is improved to allow greater visualization of the activity in the image. Multivariate analysis such as PCA may then be applied to each slice of the dynamic PET images.

    摘要翻译: 提供了一种提高正电子发射断层摄影(PET)图像质量的方法和系统。 通过预处理动态PET图像,然后在图像上应用多变量分析工具,可以改善图像质量,以生成改进的质量动态PET图像。 动态PET图像是从PET研究的图像域中的原始动态PET数据重建的图像。 第一归一化方法是对于可能由图像重构和/或从检测器读数中的随机变化导致的负值的数据处理(也称为噪声预归一化)。 第二归一化方法是背景噪声预归一化,其中背景像素值被掩蔽。 第三种归一化方法是动态预标准化,其中改善对比度以允许图像中的活动的更大可视化。 然后可以将多变量分析(例如PCA)应用于动态PET图像的每个切片。

    Method and system of multivariate analysis on volume-wise data of reference structure normalized images for improved quality in positron emission tomography studies
    4.
    发明授权
    Method and system of multivariate analysis on volume-wise data of reference structure normalized images for improved quality in positron emission tomography studies 失效
    参考结构体积数据多元分析方法和系统,正电子发射断层扫描研究提高质量标准化图像

    公开(公告)号:US08233689B2

    公开(公告)日:2012-07-31

    申请号:US12065119

    申请日:2006-08-31

    IPC分类号: G06K9/00

    摘要: A method and system are provided to mask out the background in dynamic PET images, to perform pre-normalization on the masked dynamic PET images, and to apply multivariate image analysis (e.g., principal component analysis PCA) on the masked pre-normalized dynamic PET images in order to improve the quality of the dynamic PET images and the PET study. A masking operation applies PCA to untreated dynamic PEET images before any pre-normalization in order to mask out the background pixels. This masking operation uses the Otsu method. A first normalization method is background noise pre-normalization where pixel values are corrected for background noise. A second normalization method is kinetic pre-normalization where the contrast within an image is improved. Multivariate analysis such as PCA may be applied on the whole volume to find the largest variance in the structure.

    摘要翻译: 提供了一种方法和系统来掩盖动态PET图像中的背景,对掩蔽的动态PET图像执行预归一化,并将多变量图像分析(例如主成分分析PCA)应用于掩蔽的预标准化动态PET 图像以提高动态PET图像和PET研究的质量。 屏蔽操作在任何预归一化之前将PCA应用于未处理的动态PEET图像,以便屏蔽背景像素。 该掩蔽操作使用Otsu方法。 第一归一化方法是对背景噪声校正像素值的背景噪声预归一化。 第二种归一化方法是动态预归一化,其中图像内的对比度得到改善。 多变量分析如PCA可以应用在整个体积上,以找出结构中最大的变化。

    Method and System of Multivariate Analysis on Normalized Volume-Wise Data in the Sinogram Domain For Improved Quality in Positron Emission Tomography Studies
    5.
    发明申请
    Method and System of Multivariate Analysis on Normalized Volume-Wise Data in the Sinogram Domain For Improved Quality in Positron Emission Tomography Studies 失效
    方法与系统的多因素分析正常化体积数据在Sinogram领域提高质量正电子发射断层扫描研究

    公开(公告)号:US20080310697A1

    公开(公告)日:2008-12-18

    申请号:US12065140

    申请日:2006-08-31

    IPC分类号: G06K9/00

    摘要: A method and system are provided for improving the quality in positron emission tomography (PET) images. PET input data is masked using raw dynamic PET data (sinograms) as input for primary component analysis (PCA) that generates primary components which in turn are used to create a mask. This mask can be used to allow object pixel data to be extracted from the sinograms into masked sinograms where background pixels outside the reference object are set to zero. A volume-wise approach to PCA uses masked sinograms as input data. Pixel-wise noise pre-normalization may then be performed generating pre-normalized sinograms from the masked PET input data. PCA is then performed on the pre-normalized sinograms resulting in PCA sinograms recreated into PCA-modified sinograms by adding background pixel values of zero. These PCA-modified sinograms may optionally be scaled and may then be reconstructed into dynamic PET images with improved image quality.

    摘要翻译: 提供了一种提高正电子发射断层摄影(PET)图像质量的方法和系统。 PET输入数据使用原始动态PET数据(正弦图)作为主要成分分析(PCA)的输入进行掩蔽,主成分分析(PCA)产生主要成分,而主成分又用于创建掩模。 该掩模可以用于允许将对象像素数据从正弦图提取到被引用对象外部的背景像素设置为零的掩蔽的正弦图。 PCA使用屏蔽的正弦图作为输入数据。 然后可以从掩蔽的PET输入数据生成预标准化的正弦图像素像噪声预归一化。 然后在预标准化的正弦图上进行PCA,通过添加零的背景像素值,将PCA正弦图重新创建成PCA修正的正弦图。 这些PCA修改的正弦图可以可选地被缩放,然后可以被重建成具有改善的图像质量的动态PET图像。

    IMAGE ANALYIS METHOD AND SYSTEM
    6.
    发明申请
    IMAGE ANALYIS METHOD AND SYSTEM 失效
    图像分析方法与系统

    公开(公告)号:US20120045106A1

    公开(公告)日:2012-02-23

    申请号:US13265547

    申请日:2010-05-12

    IPC分类号: G06K9/00

    摘要: The invention relates to a system and method for enhancing image data obtained from a positron emission tomography (PET) scan. In various embodiments, the method comprises transforming an original image data set to provide a first modified image data set by performing a masked volume-wise principal component analysis (MVW-PCA) on the original image data set. The first modified image data set is then transformed to provide a second modified image data set by performing a masked volume-wise independent component analysis (MVW-ICA) on the first modified image data set, the second modified image data set thereby comprising enhanced image data.

    摘要翻译: 本发明涉及一种用于增强从正电子发射断层摄影(PET)扫描获得的图像数据的系统和方法。 在各种实施例中,该方法包括通过在原始图像数据集上执行屏蔽的体积主成分分析(MVW-PCA)来变换原始图像数据集以提供第一修改图像数据集。 然后,对第一修改图像数据集进行变换以提供第二修改图像数据集,通过对第一修改图像数据集执行掩蔽的体积独立分量分析(MVW-ICA),由此包括增强图像 数据。

    Image analysis method and system
    7.
    发明授权
    Image analysis method and system 失效
    图像分析方法和系统

    公开(公告)号:US08526701B2

    公开(公告)日:2013-09-03

    申请号:US13265547

    申请日:2010-05-12

    IPC分类号: G06K9/00 G01T1/164

    摘要: The invention relates to a system and method for enhancing image data obtained from a positron emission tomography (PET) scan. In various embodiments, the method comprises transforming an original image data set to provide a first modified image data set by performing a masked volume-wise principal component analysis (MVW-PCA) on the original image data set. The first modified image data set is then transformed to provide a second modified image data set by performing a masked volume-wise independent component analysis (MVW-ICA) on the first modified image data set, the second modified image data set thereby comprising enhanced image data.

    摘要翻译: 本发明涉及一种用于增强从正电子发射断层摄影(PET)扫描获得的图像数据的系统和方法。 在各种实施例中,该方法包括通过在原始图像数据集上执行屏蔽的体积主成分分析(MVW-PCA)来变换原始图像数据集以提供第一修改图像数据集。 然后,对第一修改图像数据集进行变换以提供第二修改图像数据集,通过对第一修改图像数据集执行掩蔽的体积独立分量分析(MVW-ICA),由此包括增强图像 数据。

    METHOD AND SYSTEM FOR OUTLINING A REGION IN POSITRON EMISSION TOMOGRAPHY STUDIES
    10.
    发明申请
    METHOD AND SYSTEM FOR OUTLINING A REGION IN POSITRON EMISSION TOMOGRAPHY STUDIES 审中-公开
    用于排除位置排列测量研究中的一个地区的方法和系统

    公开(公告)号:US20100135556A1

    公开(公告)日:2010-06-03

    申请号:US12447270

    申请日:2007-10-25

    IPC分类号: G06K9/48 G06T7/00

    CPC分类号: G06T7/12 G06T2207/10104

    摘要: In a method and system for outlining a region of interest in a Positron Emission Tomography (PET) scan study, a processor may, based on application of Masked Volume Wise Principal Component Analysis (MVW-PCA) to a plurality of scan images, generate a PC2 image showing kinetic behavior of a particular part of a subject, in particular, the grey matter of the cerebellar cortex of the subject, and may outline, in the PC2 image, a region of the PC2 image having highest pixel intensity values of the PC2 image or of a portion thereof as a region of interest, and, in particular, as a reference region. The processor may generate a PC3 image showing kinetic behavior of a different part of the subject, in particular, blood vessels of the subject, import the outline into the PC3 image to determine the correctness of the outline, and modify the outline if it is incorrect.

    摘要翻译: 在用于概括正电子发射断层扫描(PET)扫描研究中的感兴趣区域的方法和系统中,处理器可以基于对多个扫描图像应用蒙版卷智慧主成分分析(MVW-PCA),生成 显示受试者的特定部位,特别是受试者的小脑皮质的灰质的动力学行为的PC2图像,并且可以在PC2图像中概括具有PC2的最高像素强度值的PC2图像的区域 图像或其一部分作为感兴趣区域,特别是作为参考区域。 处理器可以产生显示受试者的不同部分(特别是受试者的血管)的动力学行为的PC3图像,将轮廓导入PC3图像以确定轮廓的正确性,并且如果轮廓不正确则修改轮廓 。