摘要:
Systems and methods are disclosed that facilitate normalizing and beautifying digitally generated handwriting, such as can be generated on a tablet PC or via scanning a handwritten document. A classifier can identify extrema in the digital handwriting and label such extrema according to predefined categories (e.g., bottom, baseline, midline, top, other, . . . ). Multi-linear regression, polynomial regression, etc., can be performed to align labeled extrema to respective and corresponding desired points as indicated by the labels. Additionally, displacement techniques can be applied to the regressed handwriting to optimize legibility for reading by a human viewer and/or for character recognition by a handwriting recognition application. The displacement techniques can comprise a “rubber sheet” displacement algorithm in conjunction with a “rubber rod” displacement algorithm, which can collectively preserve spatial features of the handwriting during warping thereof.
摘要:
A system that facilitates generation of data that can be employed in connection with training a classifier. The system comprises a component that receives a data set that is employed in connection with training the classifier, and an expansion component that applies elastic distortion algorithm(s) to a subset of the data set to generate additional labeled training data.
摘要:
A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.
摘要:
Systems and methods are described that facilitate performing feature extraction across multiple received input features to reduce computational overhead associated with feature processing related to, for instance, optical character recognition. Input feature information can be unfolded and concatenated to generate an aggregated input matrix, which can be convolved with a kernel matrix to produce output feature information for multiple output features concurrently.
摘要:
A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.
摘要:
A method and system for implementing character recognition is described herein. An input character is received. The input character is composed of one or more logical structures in a particular layout. The layout of the one or more logical structures is identified. One or more of a plurality of classifiers are selected based on the layout of the one or more logical structures in the input character. The entire character is input into the selected classifiers. The selected classifiers classify the logical structures. The outputs from the selected classifiers are then combined to form an output character vector.
摘要:
A system that facilitates document retrieval and/or indexing is provided. A component receives an image of a document, and a search component searches data store(s) for a match to the document image. The match is performed over word-level topological properties of images of documents stored in the data store(s).
摘要:
An image capturing system is installable in a room opposite a writing surface. The image capturing system is adapted to take visual images of the writing surface and identify information written thereon.
摘要:
A system and method facilitating activity (e.g., dithering/half toning and/or noise) detection is provided. The invention includes an activity detection system having a connected component analyzer and an activity detector. The invention provides for the quantity of connected component(s) in and/or intersecting a region surrounding a pixel to be determined. The activity detector provides an activity map output based, at least in part, upon the quantity of connected component(s) in and/or intersecting the region. The invention further provides for an optional image processor. In one example, if the quantity exceeds a first threshold, dithering/half toning is detected and appropriate action can be taken. Additionally, if the quantity is less than a second threshold, noise is detected and appropriate action can be taken.
摘要:
A system and method facilitating pattern recognition is provided. The invention includes a pattern recognition system having a convolutional neural network employing feature extraction layer(s) and classifier layer(s). The feature extraction layer(s) comprises convolutional layers and the classifier layer(s) comprises fully connected layers. The pattern recognition system can be trained utilizing a calculated cross entropy error. The calculated cross entropy error is utilized to update trainable parameters of the pattern recognition system.