Abstract:
An all digital model of nonlinear transmitter signal distortion in signals received at a receiver of a transmitter-receiver may be used to estimate distortion. The estimated distortion may then be cancelled from the received signals to improve signal quality of the received signal. The digital nonlinear model may be part of an estimator circuit that estimates nonlinear distortion terms by applying a formula or transformation to a digitized version of the signals transmitter at a transmitter of the transmitter-receiver. A mixer may be used to shift a frequency of the estimated nonlinear terms away from a transmitter frequency so that the nonlinear terms can later be subtracted from the incoming signal received at the receiver at a receiver frequency. Circuits and methods are provided.
Abstract:
Transmitter noise cancellation may be applied on a channel by channel basis to active channels of an incoming radio frequency signal received at a receiver. A noise cancellation filter may be provided for each active channel in a predetermined signal band. Applying noise cancellation on a per active channel basis instead of to the entire receive band may substantially reduce the filtering requirement and number of filter coefficients or taps to save power and reduce manufacturing costs. Channelized transmitter noise cancellers, multi transmitter-receiver cross coupling cancellers, and hybrid full signal band and channelized transmitter noise cancellers are also provided.
Abstract:
Embodiments of the present invention may include power amplifier architectures and systems for use in wireless communication systems. The systems may include a first circuit path for receiving an input signal and decomposing the signal into two vector signals using an out-phasing generator, modifying the vectors based on predetermined value limit, amplifying the vectors using power amplifiers, and combining the vectors to provide an amplified output. The system may include a second circuit path for generating an estimate of an envelope of the input signal and using the envelope to modulate the voltage supplies of the power amplifiers when amplifying the vector signals. The system may also include a feedback path for sending information regarding the envelope of the input signal into the out-phasing generator, which may modify the vector signals in response thereto.
Abstract:
In a multi transmitter-receiver system, transmitter noise cancellation may be applied selectively for certain transmitters by exploiting asymmetries of the system. Hence, observation receiver(s) numbering less than the number of transmitters may be provided saving space and cost. Each observation receiver may selectively couple to a transmitter path and estimate the leakage noise from that transmitter. Based on the estimated leakage noise, noise cancellation may be applied to corresponding receiver path(s). Selection of the transmitters for leakage estimation may be based on system conditions at that time, which may be known to the system or may be estimated dynamically.
Abstract:
A radio frequency transceiver (102), including a transmitter (104), a duplexer (108) and a direct-conversion receiver (106) including a mixer (140 and 141). An IIP2 calibration system (170), coupled to the transceiver, includes an IIP2 coefficient estimator (172) for calculating an estimate of second-order distortion intermodulation distortion, and an IIP2 controller (174) for adjusting an IIP2 tuning port of the mixer in the receiver to minimize second-order distortion intermodulation distortion in the receiver that may be caused by the receiver receiving a transmit RF signal leaking through the duplexer.