摘要:
An apparatus to measure surface orientation maps of an object may include a light source that is configured to illuminate the object with a controllable field of illumination. One or more cameras may be configured to capture at least one image of the object. A processor may be configured to process the image(s) to extract the reflectance properties of the object including an albedo, a reflection vector, a roughness, and/or anisotropy parameters of a specular reflectance lobe associated with the object. The controllable field of illumination may include limited-order Spherical Harmonics (SH) and Fourier Series (FS) illumination patterns with substantially similar polarization. The SH and FS illumination patterns are used with different light sources.
摘要:
An apparatus to measure surface orientation maps of an object may include a light source that is configured to illuminate the object with a controllable field of illumination. One or more cameras may be configured to capture at least one image of the object. A processor may be configured to process the image(s) to extract the reflectance properties of the object including an albedo, a reflection vector, a roughness, and/or anisotropy parameters of a specular reflectance lobe associated with the object. The controllable field of illumination may include limited-order Spherical Harmonics (SH) and Fourier Series (FS) illumination patterns with substantially similar polarization. The SH and FS illumination patterns are used with different light sources.
摘要:
A system may almost instantly capturing high-resolution geometry and reflectance data of a portion of a human subject. The system may include multiple cameras, each oriented to controllably capture an image of the portion of the human subject from a different location in space; multiple lights, each oriented to controllably illuminate the portion of the human subject from a location in space significantly different than the location in space of the other lights; and a controller. The controller may divide the cameras into subgroups with each subgroup of cameras containing at least one camera and with each camera belonging to only one of the subgroups; cause each subgroup of cameras to sequentially capture a single image of the portion of the human subject; and cause at least one of the lights to light while each subgroup of cameras captures a single image of the portion of the human subject. The system may include an image processing system that generates the high resolution geometry and reflectance data based on only one image from each camera.A polarizing optical element may be between each camera and the portion of the human subject. A polarizer filter may be between each light and the portion of the human subject. A controller may cause all of the cameras to simultaneously capture a single image of the portion of the human subject while the portion of the human subject is illuminated by all of the lights. The specular reflections from the portion of the human subject that are captured by one of the cameras may have a color distribution across the portion of the human subject that is different than the specular reflections from the portion of the human subject that are captured by another of the cameras.
摘要:
Single-shot photometric stereo techniques are disclosed in which chromaticity is assumed to be a variable. Scene illumination includes three or more spectrally distinct light sources. A scene image is taken with a camera system configured to measure five or more different bands, or channels, of the visible light spectrum. The light sources can include narrow-band colored LED lights, possibly combined with color filters to refine the spectral distributions. In each configuration, a beam splitter assembly is used to align two or more color cameras having different color filters placed over their lenses. By use of such techniques, a single multispectral photograph of a subject provides enough information to recover both the full-color reflectance and the surface normals on a per-pixel basis.