摘要:
Method and apparatus for reducing or cancelling impulse noise from a signal containing noise. The desired noise-free signal is assumed to have a representative frequency .omega..sub.3, but may have a range of frequencies adjacent to this frequency, and is assumed to have substantially zero amplitude for all frequencies .omega. .omega..sub.2, where .omega..sub.1
摘要:
Method and apparatus for using a plurality of correlators to improve an estimate of direct signal arrival time by identifying features of a correlation function at and adjacent to the correlation peak. In a first embodiment, the errors in location of the center point of a correlation function R(.tau.), formed by the incoming composite signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. In a second embodiment, multipath signal strengths and phases are estimated, using multiple sampling of the correlation function R(.tau.). This approach assumes that path delays of the direct signal and of the multipath signals can be determined separately. Path delays can be determined by any of at least three approaches: (1) identification of slope transition points in the correlation function; (2) Cepstrum processing of the received signal, using Fourier transform analysis; and (3) use of a grid of time points on the correlation function domain, and identification of time values, associated with certain solution parameters of the least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of multipath time delays reduces the least mean squares analysis to a linear problem. A modified signal is constructed, with the multipath signal(s) approximately removed from the incoming composite signal. This modified signal allows a better estimate of the arrival time of the direct signal.
摘要:
Method and apparatus for using a plurality of correlators to improve the estimate of direct signal arrival time by identifying detailed features of a correlation function at and adjacent to the correlation peak. The errors in location of the center point of a correlation function R(.tau.), formed by the received signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. Alternatively, the multipath signal strengths and phases are estimated by a least mean squares analysis, using multiple sampling of a correlation function of an expected signal and an arriving composite signal that includes the direct signal and one or more multipath signals. Times of arrival or path delays of the direct signal and the multipath signals are determined separately. Path delays can be determined by at least three approaches: (1) identification of slope transition points in the correlation function R(.tau.); (2) Cepstrum processing of the received signal, using Fourier transform and inverse transform analysis; and (3) use of a grid of time shift points for the correlation function, and identification of time shift values, associated with certain solution parameters for a least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of path delays reduces the least mean squares analysis to a solvable linear problem. A modified received signal is constructed, with multipath signal(s) approximately removed.
摘要:
In a geo-security system, a device receives RF signals from multiple distinct classes of RF communication systems and extracts location-dependent signal parameters. A current geotag is computed from the parameters by fuzzy extractors involving quantization of the parameters and Reed-Solomon decoding to provide a reproducible unique geotag. The current geotag is compared with a stored geotag, and a geo-secured function of the device is executed based on the result of the comparison. The use of multiple signal sources of different types, combined with special fuzzy extractors provides a robust geotag that allows both lower false rejection rate and lower false acceptance rate.
摘要:
Aspects are applicable to secure encryption such as in the generation of a cryptographic key from location information as may be useful in portable/wireless communication devices. As an example, one embodiment is implemented as a method of generating cryptographic keys from location information derived from a signal received from a publicly-used wireless communication system. The location information is protected from fraudulently generated signals using direction of arrival of the received signal. The method attempts to verify that the direction of arrival corresponds to an expected direction of arrival for a received signal of the primary signal type, and in response to the direction of arrival being verified for the direction of arrival, and then enables use of an encryption key that is generated from positional information derived from the received signal
摘要:
A data encryption and decryption system securely geoencrypts data using location-dependent navigation signals. To increase the entropy of the cryptographic key to guard against a brute-force attack, geoencryption is made to depend on largely time-independent characteristics of the navigation signals that are not easily spoofed, including the time difference of arrival, the envelope-to-cycle difference, the differential signal-to-noise, the signal envelope shape, and the directions of arrival of the navigation signal set.
摘要:
Various systems, methods and devices are implemented for processing received signals. Consistent with one such embodiment, a method is implemented for use in a signal-communication receiver having a carrier-tracking loop and a processor for operating adaptive algorithms. The method involves interpreting a received signal using space time adaptive processing (STAP). A convergence speed of the adaptive algorithms is set based on a noise bandwidth of a phase-locked loop (PLL) in the carrier-tracking loop. A carrier-phase de-rotation constraint is implemented into weight parameters of the STAP to preserve spatial and temporal degrees of freedom in the STAP.
摘要:
In a geo-security system, a device receives RF signals from multiple distinct classes of RF communication systems and extracts location-dependent signal parameters. A current geotag is computed from the parameters by fuzzy extractors involving quantization of the parameters and Reed-Solomon decoding to provide a reproducible unique geotag. The current geotag is compared with a stored geotag, and a geo-secured function of the device is executed based on the result of the comparison. The use of multiple signal sources of different types, combined with special fuzzy extractors provides a robust geotag that allows both lower false rejection rate and lower false acceptance rate.
摘要:
Various systems, methods and devices are implemented for processing received signals. Consistent with one such embodiment, a method is implemented for use in a signal-communication receiver having a carrier-tracking loop and a processor for operating adaptive algorithms. The method involves interpreting a received signal using space time adaptive processing (STAP). A convergence speed of the adaptive algorithms is set based on a noise bandwidth of a phase-locked loop (PLL) in the carrier-tracking loop. A carrier-phase de-rotation constraint is implemented into weight parameters of the STAP to preserve spatial and temporal degrees of freedom in the STAP.
摘要:
A multipath mitigation method consists of locating a multipath-invariant (MPI) point of an ideal autocorrelation function and measuring the distance between the MPI point and DLL. The same MPI point is located in a received correlation function, and the distance between the point and the DLL, now affected by multipath, is measured. The difference between the ideal distance and the actual distance is the code tracking error resulting from multipath. The error is subtracted from the computed pseudorange or used to control the DLL. The method can be used to reduce the effects of all types of tracking error sources, such as signal transmission failure or code noise.