摘要:
Higher generation radially layered copolymeric dendrimers having a hydrophilic poly(amidoamine) or a hydrophilic poly(propyleneimine) interior and a hydrophobic organosilicon exterior are prepared by first reacting a hydrophilic dendrimer having --NH.sub.2 surface groups with an organosilicon compound, and then hydrosilating the resulting copolymeric dendrimer with another organosilicon compound in the presence of a noble metal catalyst. In an alternate embodiment, the radially layered copolymeric dendrimers are prepared by reacting a hydrophilic dendrimer having --NH.sub.2 surface groups directly with an organosilicon dendron or organosilicon hyperbranched polymer.
摘要:
Radially layered copoly-dendrimers having unusual surface properties and novel applications have been synthesized and characterized. These are the first copolymeric dendrimers composed of a hydrophilic poly(amidoamine) (PAMAM) interior with hydrophobic organosilicon surfaces. These dendrimers have been prepared by surface modifications of an ethylene diamine core PAMAM dendrimer with (3-acryloxypropyl)methyldimethoxysilane, (3-acryloxypropyl)bis(vinyldimethylsiloxy)methylsilane, (3-acryloxypropyl)tris(trimethylsiloxy)silane, chloromethyltrimethylsilane, and chloromethyldimethylvinylsilane, to varying degrees of surface coverage. The obtained products were characterized by .sup.1 H, .sup.13 C, and .sup.29 Si NMR, and by DSC and TGA. The dendrimers with less completely covered organosilicon surfaces are water soluble, and have considerable surface activity, the best of which lowered the surface tension of water to less than 30 mN/m. Areas in their surface, according to the Gibbs adsorption isotherm, are surprisingly small, i.e., of the order of 100 .ANG..sup.2 /mol. More completely hydrophobed dendrimers are water insoluble, and form spread monolayers on water, capable of sustaining surface pressures over 40 mN/m. Areas per molecule are in the 1,000 .ANG..sup.2 /mol range.
摘要:
Dendrimer-based networks are prepared from copolydendrimer precursors having well defined hydrophilic polyamidoamine (PAMAM) or polypropyleneimine (PPI) interiors, and organosilicon outer layers ending with .tbd.Si--OCH.sub.3 surface groups. These networks have precisely controllable size, shape, and spatial distribution, of nanoscopic hydrophilic and hydrophobic domains. Such constructs are prepared by crosslinking one type of copolydendrimer precursor, or by crosslinking mixtures of different copolydendrimers having different generations of PAMAM or PPI dendrimers in the interior, surrounded by different organosilicon exteriors. Crosslinking can be controlled by adding difunctional, trifunctional, or polyfunctional low molecular weight or oligomeric crosslinking agents; or by exposing a copolydendrimer having hydrolyzable surface groups to atmospheric moisture. Elastomeric dendrimer-based networks have low glass temperatures of -15.degree. C. or below, are optically clear, transparent, colorless; and have a non-stick surface which can be formed into films of small thickness.
摘要:
Dendritic polymer based networks consisting of well-defined hydrophilic and oleophilic (i.e., hydrophobic) domains, are capable of performing as nanoscopic sponges for electrophilic guest moieties such as (i) inorganic and organic cations; (ii) charged or polarized molecules containing electrophilic constituent atoms or atomic groups; and (iii) other electrophilic organic, inorganic, or organometallic species. As a result of such performance, the networks yield novel nanoscopic organo-inorganic composites which contain organosilicon units as an integral part of their covalently bonded matrix.