摘要:
A method and system for scoring and ranking a plurality of component links in a social technical system having a plurality of components representing people and objects are provided. In one aspect, a degree of consistency relative to two or more people working on one or more objects and dependencies between the objects is determined to derive scores for the component links. The method and system identifies gaps in the link and determines the impact of filling the gaps. In another aspect, component links may be ranked and scores aggregated to provide system level quantifications.
摘要:
A method and system for scoring and ranking a plurality of component links in a social technical system having a plurality of components representing people and objects are provided. In one aspect, a degree of consistency relative to two or more people working on one or more objects and dependencies between the objects is determined to derive scores for the component links. The method and system identifies gaps in the link and determines the impact of filling the gaps. In another aspect, component links may be ranked and scores aggregated to provide system level quantifications.
摘要:
A self-propelled, automated, autonomic grid crawler which, when attached to a wire, moves along the wire to sense conditions of the wire. The grid crawler includes a central processing unit (CPU), working memory, such as random access memory (RAM), persistent money, such as read only memory (ROM) and hard drive (HD), sensor electronics, a wireless interface, a location device, such as a global positioning satellite (GPS) receiver, motive power system, and a battery. The sensor electronics serves to sense various types of faults. The CPU analyzes the data from the sensor electronics using pre-analysis and pre-qualification algorithms, which are stored in the HD. Depending on the results of the analysis, the CPU transmits information to the central station, either directly or indirectly via mounted docking devices, that potentially indicates a fault, including the location of the fault as determined by the GPS receiver. The pre-processing and pre-qualifying of the data at the autonomic grid crawler limits the amount of data that needs to be transmitted to the central station, thereby saving battery power.
摘要:
High impedance fault detection uses, in addition to sensors that measure purely electrical (i.e., current and voltage), molecule sensors are provided in an electrical grid. These molecule sensors are sensitive to the surrounding environment and may detect one or more of a variety of molecules, such as ozone (O3), combustion gases (carbon monoxide, carbon dioxide and oxygen levels), and odor molecules (ammonia, sulfur dioxide, burned hair/feather, burned proteins, and the like), depending on the type of environmental phenomena that may be expected in a particular location of the sensor(s). These sensors, in combination with conventional electrical sensors, provide a more complete set of data for evaluation and localization of a potential high impedance electrical fault. The use of such sensors is especially useful in confined areas like underground parking lots, substations, and the like.
摘要:
A self-propelled, automated, autonomic grid crawler which, when attached to a wire, moves along the wire to sense conditions of the wire. The grid crawler includes a central processing unit (CPU), working memory, such as random access memory (RAM), persistent money, such as read only memory (ROM) and hard drive (HD), sensor electronics, a wireless interface, a location device, such as a global positioning satellite (GPS) receiver, motive power system, and a battery. The sensor electronics serves to sense various types of faults. The CPU analyzes the data from the sensor electronics using pre-analysis and pre-qualification algorithms, which are stored in the HD. Depending on the results of the analysis, the CPU transmits information to the central station, either directly or indirectly via mounted docking devices, that potentially indicates a fault including the location of the fault as determined by the GPS receiver. The pre-processing and pre-qualifying of the data at the autonomic grid crawler limits the amount of data that needs to be transmitted to the central station, thereby saving battery power.
摘要:
A method and apparatus detect and localize electric faults in electrical power grids and circuit. High impedance faults are detected by analyzing data from remote sensor units deployed over the network using the algorithms of speech and speaker analysis software. This is accomplished by converting the voltage and/or current waveform readouts from the sensors into a digital form which is then transmitted to a computer located either near the sensors or at an operations center. The digitized data is converted by a dedicated software or software/hardware interface to a format accepted by a reliable and stable software solution, such as speech or speaker recognition software. The speech or speaker recognition software must be “trained” to recognize various signal patterns that either indicate or not the occurrence of a fault. The readout of the speech or speaker recognition software, if indicating a fault, is transmitted to a central processor and displayed to provide information on the most likely type of fault. Automatic or human decision is then implemented based on the generated information.
摘要:
A method and apparatus detect and localize electric faults in electrical power grids and circuit. High impedance faults are detected by analyzing data from remote sensor units deployed over the network using the algorithms of speech and speaker analysis software. This is accomplished by converting the voltage and/or current waveform readouts from the sensors into a digital form which is then transmitted to a computer located either near the sensors or at an operations center. The digitized data is converted by a dedicated software or software/hardware interface to a format accepted by a reliable and stable software solution, such as speech or speaker recognition software. The speech or speaker recognition software must be “trained” to recognize various signal patterns that either indicate or not the occurrence of a fault. The readout of the speech or speaker recognition software, if indicating a fault, is transmitted to a central processor and displayed to provide information on the most likely type of fault. Automatic or human decision is then implemented based on the generated information.