摘要:
The invention relates to a telecommunication network having IP packet-supporting capabilities, which includes a load distribution processing function, either centralized or distributed, by means of which a load distribution function may be applied to sets of paths between network nodes or sets of links of network trunks. The load distribution processing function handles different load distribution functions. Each of the different load distribution functions is associated to a different network input unit involved in the load distribution for a set of paths between network nodes or a set of trunk links. The invention also relates to a method of load distribution in a telecommunication network as summarized above.
摘要:
Provided is a management-system for use in a network environment including a first and second IP networks and a transport network which connects the first and second IP networks. The management system includes: a converter for optimizing a path in an IP-domain via a first algorithm and for converting IP-traffic-signals into transport-traffic-signals; and an optimiser which optimizes a topology that overlays the transport network by optimizing channels in the transport-network according to at least one second algorithm. The first algorithm is an IP multi protocol label switching routing optimization algorithm. The second algorithm is an algorithm based on a plurality of constraints and objectives such as a flow conservation constraint, logical link capacity constraint, optical router port constraint, wavelength cost objective, optical router port occupation objective, advertised link number objective, spare capacity objective, wavelength re-use benefit objective and optical service level agreement constraint.
摘要:
In a networking environment including one or more network processing (NP) devices and implementing a routing protocol for routing data packets from a source NP devices to destination NP devices via a switch fabric, with each network processing device supporting a number of interface ports, a system and method for enabling a routing system to recover more quickly that the routing protocol so as to significantly reduce the occurrence of lost data packets to a failed target interface/blade. The routing system is enabled to track the operational status of each network processor device and operational status of destination ports supported by each network processor device in the system, and maintains the operational status as a data structure at each network processing device. Prior to routing packets, an expedient logical determination is made as to the operational status of a target network processing device and target interface port of a current packet to be routed as represented in the data structure maintained at the source NP device. If the target blade/interface is not operations, an alternative route may be provided by ECMP. In this manner, correct routing of packets is ensured with reduced occurrence of lost data packets due to failed target NP devices/ports.
摘要:
A controllable mechanism for by-passing Layer 4 (L4) classification is based on the insertion into a set of MAC rules in SA MAC lookup means a set of Layer 4 (L4) Skip Classification Flags. Routing is accomplished by selecting which rule to apply to the packet and reading the state of the corresponding L4 Skip Classification Flag. In response to a first state of said corresponding L4 Skip Classification Flag, performing an L4 classification followed by a routing of the data packet. In response to a second state of said corresponding L4 Skip Classification Flag, reading the state of a Global Classification Flag. In response to a first state of said Global Classification Flag, performing an L4 classification followed by a routing of said data packet. In response to a second state of said Global Classification Flag performing a routing of the data packet. The L4 Skip option change does not use the option change of reading the L4 Skip Classification Flag from the port table, whereas the second embodiment uses this option. The third and fourth embodiments are similar to the first and second embodiments but with the. addition of inserting into a set of Layer 3 (L3) rules in L3 lookup means a set of Layer 4 (L4) Classification Required Flags. The third embodiment does not use the option of reading the L4 Skip Classification Flag from the port table, whereas the fourth embodiment uses this option.