摘要:
A method and system for enabling a visually impaired user to use a touch-sensitive device. The present invention provides an interface for the visually impaired (IVI) system which enables a visually impaired user to use a touch-sensitive screen. The IVI system provides an explore mode in which a visually impaired user may determine which objects are on the touch-sensitive screen by dragging a finger over the touch-sensitive screen. In particular, the IVI system announces objects as a user touches them. For example, the IVI system announces text as it is touched and announces controls, such as buttons, as they are touched. In addition, the IVI system enables a user to execute controls. A user may execute a control, such as a button, by dragging a finger onto the control, and then, without dragging the finger off of the control, lifting the finger off of the touch-sensitive screen. The IVI system further enables a user to scroll through lists on a touch-sensitive screen. In particular, the IVI system enables a user to use a scroll thumb to scroll through a list. When a user drags a finger over the scroll thumb, and then, without dragging the finger off of the scroll thumb, lifts the finger off of the touch-sensitive screen, the IVI system enters scroll mode. In the scroll mode, a user may drag a finger anywhere on the touch-sensitive screen to scroll the list. While in scroll mode if a user again lifts their finger off of the touch-sensitive screen, the IVI system returns to explore mode.
摘要:
A method and system for enabling a visually impaired user to use a touch-sensitive device. The present invention provides an interface for the visually impaired (IVI) system which enables a visually impaired user to use a touch-sensitive screen. The IVI system provides an explore mode in which a visually impaired user may determine which objects are on the touch-sensitive screen by dragging a finger over the touch-sensitive screen. In particular, the IVI system announces objects as a user touches them. For example, the IVI system announces text as it is touched and announces controls, such as buttons, as they are touched. In addition, the IVI system enables a user to execute controls. A user may execute a control, such as a button, by dragging a finger onto the control, and then, without dragging the finger off of the control, lifting the finger off of the touch-sensitive screen. The IVI system further enables a user to scroll through lists on a touch-sensitive screen. In particular, the IVI system enables a user to use a scroll thumb to scroll through a list. When a user drags a finger over the scroll thumb, and then, without dragging the finger off of the scroll thumb, lifts the finger off of the touch-sensitive screen, the IVI system enters scroll mode. In the scroll mode, a user may drag a finger anywhere on the touch-sensitive screen to scroll the list. While in scroll mode if a user again lifts their finger off of the touch-sensitive screen, the IVI system returns to explore mode.
摘要:
An architecture is provided that enables an accessibility aid to directly access and manipulate user interface elements of an application program programmatically. Moreover, such access and manipulation occurs in an application-independent manner, so that an accessibility aid utilizing the architecture can access any application program that conforms to the architecture, without the accessibility aid needing any prior knowledge of the application program or its user interface elements. User interface elements typically have both a visual representation displayed on the video display and an implementation, which is the code and data implementing the user interface element. The architecture provides an accessibility aid with direct access to the implementation of user interface elements, thus enabling the accessibility aid to both examine various characteristics of the user interface element and manipulate these characteristics, which may affect its visual representation.
摘要:
An improved recognition system for translating Braille into multi-byte languages is provided that resolves ambiguities in the translation. By resolving ambiguities in the translation, the improved recognition system helps integrate visually-impaired users into the workforce. Such integration is achieved by providing visually-impaired users with both the means to input Braille for translation into a multi-byte language and the means to disambiguate the translation so that it reflects what the user intended. In this manner, the translation accurately reflects the intentions of the user. Furthermore, the translation is actually stored in the computer in the multi-byte language so that both sighted and nonsighted users alike can utilize the translation.
摘要:
An architecture is provided that enables an accessibility aid to directly access and manipulate user interface elements of an application program programmatically. Moreover, such access and manipulation occurs in an application-independent manner, so that an accessibility aid utilizing the architecture can access the user interface elements of any application program that conforms to the architecture, without the accessibility aid needing any prior knowledge of the application program or its user interface elements. User interface elements typically have both a visual representation displayed on the video display and an implementation, which is the code and data implementing the user interface element. The architecture provides an accessibility aid with direct access to the implementation of user interface elements, thus enabling the accessibility aid to both examine various characteristics of the user interface element and manipulate these characteristics, which may affect its visual representation. Although this architecture provides many benefits to accessibility aids, some application programs predate the preferred architecture and are thus unable to support this architecture. The present system supports the architecture on behalf of such application programs, known as legacy application programs, to retrofit or integrate these application programs into the architecture.
摘要:
An audible-output system disambiguates the phonetic sounds of multi-byte characters so that a visually-impaired user can uniquely identify which characters are associated with the output. The audible-output system provides this disambiguation through the use of a secondary audio channel that simultaneously outputs one or more sounds that distinguishes a character being output on a primary audio channel. That is, the phonetics of a character are audibly output on the primary channel, and the distinguishing sound is simultaneously output on a secondary channel. The combination of the two sounds on the two channels unambiguously identifies the character being output to the listener. In effect, this system brings the distinctness of shape to a visually-impaired listener and reinforces the differences in meaning between similar-sounding characters to the listener.
摘要:
Identifier information is generated for a user interface element of interest within a user interface of a computer program based on a description of a hierarchical element path comprising, e.g., some combination of parent elements that the user interface element inherits from, class names of user interface elements, module names of application programs in the element path, and sibling order information. Process identifiers may also be added to distinguish between user interface elements of two different process instances of the same program. Unlike more fragile identifiers, such an element path identifier persists across instances of the computer program, across different computers, across different builds of the program, etc. Converting between a user-defined data type and a string type and vice versa also is provided.
摘要:
Identifier information is generated for a user interface element of interest within a user interface of a computer program based on a description of a hierarchical element path comprising, e.g., some combination of parent elements that the user interface element inherits from, class names of user interface elements, module names of application programs in the element path, and sibling order information. Process identifiers may also be added to distinguish between user interface elements of two different process instances of the same program. Unlike more fragile identifiers, such an element path identifier persists across instances of the computer program, across different computers, across different builds of the program, etc. Converting between a user-defined data type and a string type and vice versa also is provided.