-
公开(公告)号:US20240363123A1
公开(公告)日:2024-10-31
申请号:US18646310
申请日:2024-04-25
Applicant: Pindrop Security, Inc.
Inventor: Elie KHOURY , Ganesh SIVARAMAN , Tianxiang CHEN , Nikolay GAUBITCH , David LOONEY , Amit GUPTA , Vijay BALASUBRAMANIYAN , Nicholas KLEIN , Anthony STANKUS
Abstract: Disclosed are systems and methods including software processes executed by a server that detect audio-based synthetic speech (“deepfakes”) in a call conversation. Embodiments include systems and methods for detecting fraudulent presentation attacks using multiple functional engines that implement various fraud-detection techniques, to produce calibrated scores and/or fused scores. A computer may, for example, evaluate the audio quality of speech signals within audio signals, where speech signals contain the speech portions having speaker utterances.
-
公开(公告)号:US20240363125A1
公开(公告)日:2024-10-31
申请号:US18646493
申请日:2024-04-25
Applicant: Pindrop Security, Inc.
Inventor: Elie KHOURY , Ganesh SIVARAMAN , Tianxiang CHEN , Nikolay GAUBITCH , David LOONEY , Amit GUPTA , Vijay BALASUBRAMANIYAN , Nicholas KLEIN , Anthony STANKUS
CPC classification number: G10L17/26 , G10L17/02 , G10L17/04 , G10L25/60 , H04M3/2281 , H04M3/5183 , H04M2201/405
Abstract: Disclosed are systems and methods including software processes executed by a server that detect audio-based synthetic speech (“deepfakes”) in a call conversation. Embodiments include systems and methods for detecting fraudulent presentation attacks using multiple functional engines that implement various fraud-detection techniques, to produce calibrated scores and/or fused scores. A computer may, for example, evaluate the audio quality of speech signals within audio signals, where speech signals contain the speech portions having speaker utterances.
-
公开(公告)号:US20240363124A1
公开(公告)日:2024-10-31
申请号:US18646431
申请日:2024-04-25
Applicant: Pindrop Security, Inc.
Inventor: Elie KHOURY , Ganesh SIVARAMAN , Tianxiang CHEN , Nikolay GAUBITCH , David LOONEY , Amit GUPTA , Vijay BALASUBRAMANIYAN , Nicholas KLEIN , Anthony STANKUS
Abstract: Disclosed are systems and methods including software processes executed by a server that detect audio-based synthetic speech (“deepfakes”) in a call conversation. Embodiments include systems and methods for detecting fraudulent presentation attacks using multiple functional engines that implement various fraud-detection techniques, to produce calibrated scores and/or fused scores. A computer may, for example, evaluate the audio quality of speech signals within audio signals, where speech signals contain the speech portions having speaker utterances.
-
公开(公告)号:US20250029614A1
公开(公告)日:2025-01-23
申请号:US18777278
申请日:2024-07-18
Applicant: PINDROP SECURITY, INC.
Inventor: David LOONEY , Nikolay GAUBITCH , Elie KHOURY
IPC: G10L17/02
Abstract: Disclosed are systems and methods including software processes executed by a server for obtaining, by a computer, an audio signal including synthetic speech, extracting, by the computer, metadata from a watermark of the audio signal by applying a set of keys associated with a plurality of text-to-speech (TTS) services to the audio signal, the metadata indicating an origin of the synthetic speech in the audio signal, and generating, by the computer, based on the extracted metadata, a notification indicating that the audio signal includes the synthetic speech.
-
公开(公告)号:US20240363119A1
公开(公告)日:2024-10-31
申请号:US18646375
申请日:2024-04-25
Applicant: Pindrop Security, Inc.
Inventor: Elie KHOURY , Ganesh SIVARAMAN , Tianxiang CHEN , Nikolay GAUBITCH , David LOONEY , Amit GUPTA , Vijay BALASUBRAMANIYAN , Nicholas KLEIN , Anthony STANKUS
IPC: G10L17/00
CPC classification number: G10L17/00
Abstract: Disclosed are systems and methods including software processes executed by a server that detect audio-based synthetic speech (“deepfakes”) in a call conversation. Embodiments include systems and methods for detecting fraudulent presentation attacks using multiple functional engines that implement various fraud-detection techniques, to produce calibrated scores and/or fused scores. A computer may, for example, evaluate the audio quality of speech signals within audio signals, where speech signals contain the speech portions having speaker utterances.
-
公开(公告)号:US20240363100A1
公开(公告)日:2024-10-31
申请号:US18646228
申请日:2024-04-25
Applicant: Pindrop Security, Inc.
Inventor: Elie KHOURY , Ganesh SIVARAMAN , Tianxiang CHEN , Nikolay GAUBITCH , David LOONEY , Amit GUPTA , Vijay BALASUBRAMANIYAN , Nicholas KLEIN , Anthony STANKUS
IPC: G10L15/02
CPC classification number: G10L15/02
Abstract: Disclosed are systems and methods including software processes executed by a server that detect audio-based synthetic speech (“deepfakes”) in a call conversation. Embodiments include systems and methods for detecting fraudulent presentation attacks using multiple functional engines that implement various fraud-detection techniques, to produce calibrated scores and/or fused scores. A computer may, for example, evaluate the audio quality of speech signals within audio signals, where speech signals contain the speech portions having speaker utterances.
-
公开(公告)号:US20200312313A1
公开(公告)日:2020-10-01
申请号:US16829705
申请日:2020-03-25
Applicant: PINDROP SECURITY, INC.
Inventor: Vinay MADDALI , David LOONEY , Kailash PATIL
IPC: G10L15/197 , H04M3/51 , G10L15/18 , G10L15/02 , G10L15/04 , G10L25/21 , G10L15/06 , G10L15/22 , G10L25/84 , G06N20/00 , G06N5/04
Abstract: Embodiments described herein provide for automatically classifying the types of devices that place calls to a call center. A call center system can detect whether an incoming call originated from voice assistant device using trained classification models received from a call analysis service. Embodiments described herein provide for methods and systems in which a computer executes machine learning algorithms that programmatically train (or otherwise generate) global or tailored classification models based on the various types of features of an audio signal and call data. A classification model is deployed to one or more call centers, where the model is used by call center computers executing classification processes for determining whether incoming telephone calls originated from a voice assistant device, such as Amazon Alexa® and Google Home®, or another type of device (e.g., cellular/mobile phone, landline phone, VoIP).
-
公开(公告)号:US20190311730A1
公开(公告)日:2019-10-10
申请号:US16375785
申请日:2019-04-04
Applicant: PINDROP SECURITY, INC.
Inventor: David LOONEY , Nikolay D. GAUBITCH
Abstract: A computer may train a single-class machine learning using normal speech recordings. The machine learning model or any other model may estimate the normal range of parameters of a physical speech production model based on the normal speech recordings. For example, the computer may use a source-filter model of speech production, where voiced speech is represented by a pulse train and unvoiced speech by a random noise and a combination of the pulse train and the random noise is passed through an auto-regressive filter that emulates the human vocal tract. The computer leverages the fact that intentional modification of human voice introduces errors to source-filter model or any other physical model of speech production. The computer may identify anomalies in the physical model to generate a voice modification score for an audio signal. The voice modification score may indicate a degree of abnormality of human voice in the audio signal.
-
-
-
-
-
-
-