摘要:
Cut filler compositions, cigarettes, methods for making cut filler compositions and cigarettes, and methods for treating mainstream tobacco smoke of cigarettes are provided that use catalyst particles capable of converting carbon monoxide to carbon dioxide. The catalyst particles are supported on tobacco powder. The tobacco powder supported catalyst particles can be prepared by dry admixing the catalyst particles and tobacco powder or by combining a dispersion of catalyst particles with the tobacco powder.
摘要:
Cut filler compositions, cigarettes, methods for making cut filler compositions and cigarettes, and methods for treating mainstream tobacco smoke of cigarettes are provided that use catalyst particles capable of converting carbon monoxide to carbon dioxide. The catalyst particles are supported on tobacco powder. The tobacco powder supported catalyst particles can be prepared by dry admixing the catalyst particles and tobacco powder or by combining a dispersion of catalyst particles with the tobacco powder.
摘要:
Cut filler compositions, cigarettes, methods for making cut filler compositions and cigarettes, and methods for treating mainstream tobacco smoke of cigarettes are provided that use catalyst particles capable of converting carbon monoxide to carbon dioxide. The catalyst particles are supported on tobacco powder. The tobacco powder supported catalyst particles can be prepared by dry admixing the catalyst particles and tobacco powder or by combining a dispersion of catalyst particles with the tobacco powder.
摘要:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes are provided, which involve the use of nanoparticle additives capable of reducing amounts of at least one constituent from mainstream and/or sidestream tobacco smoke, the at least one constituent being selected from the group consisting of aldehyde, carbon monoxide, 1,3-butadiene, isoprene, acrolein, acrylonitrile, hydrogen cyanide, o-toluidine, 2-naphtylamine, nitrogen oxide, benzene, N-nitrosonornicotine, phenol, catechol, benz(a)anthracene, benzo(a)pyrene, and mixtures thereof. Preferably, the nanoparticle additives are effective as an oxidant for the conversion of carbon monoxide to carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide and/or catalyst for conversion of aldehydes such as acetaldehyde and acrolein, hydrocarbons such as isoprene and/or phenolic compounds such as catechol to carbon dioxide and water vapor.
摘要:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes are provided, which involve the use of a catalyst capable converting carbon monoxide to carbon dioxide and/or nitric oxide to nitrogen. Cut filler compositions comprise tobacco and at least one catalyst. Cigarettes are provided, which comprise a cut filler having at least one catalyst. The catalyst comprises nanoscale metal and/or metal oxide particles supported on a fibrous support. The catalyst can be prepared by combining a dispersion of nanoscale particles with a fibrous support, or by combining a metal precursor solution with a fibrous support and then heat treating the fibrous support.
摘要:
Cut filler compositions, cigarettes, methods for making cut filler compositions and cigarettes, and methods for treating mainstream tobacco smoke of cigarettes are provided that use catalyst particles capable of converting carbon monoxide to carbon dioxide. The catalyst particles are supported on tobacco powder. The tobacco powder supported catalyst particles can be prepared by dry admixing the catalyst particles and tobacco powder or by combining a dispersion of catalyst particles with the tobacco powder.
摘要:
A wrapper for a smoking article includes a web including cellulosic fibers and a catalyst modified web-filler incorporated into the web. The catalyst modified web-filler includes a web-filler supporting a nanoparticle carbon monoxide catalyst. The nanoparticle carbon monoxide catalyst can be a nanoparticle iron oxide catalyst. Also provided is a smoking article including a cigarette tobacco rod having a wrapper including a web, a web-filler, and a nanoparticle carbon monoxide catalyst, the web-filler supporting the nanoparticle catalyst. A method of making the wrapper and a method of making a smoking article utilizing the wrapper are also provided.
摘要:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes which involve the use of manganese oxide mixtures that include nanoparticle manganese oxide and other nanoparticle additive(s) capable of converting carbon monoxide to carbon dioxide and/or converting nitric oxide to nitrogen. The compositions, articles and methods of the invention can be used to reduce the amount of carbon monoxide and/or nitric oxide present in mainstream smoke reaching the smoker and/or given off in secondhand smoke. The manganese oxide can be co-precipitated with the additive(s), or mechanically mixed with the additive(s) to form the manganese oxide mixture. The manganese oxide may have a lower light-off temperature than the additive, such that during smoking of the cigarette, the heat generated from the oxidation of carbon monoxide by manganese oxide is capable of activating the additive. The additive may include iron oxide (Fe2O3) nanoparticles.
摘要:
Cigarettes and cigarette components such as tobacco cut filler and cigarette paper, and methods for making cigarette components are provided that comprise nanostructured fibrils. The nanostructured fibrils, which can be formed and deposited in situ on tobacco cut filler and/or cigarette paper by laser vaporization controlled condensation or chemical reaction, are capable of acting as an oxidant for the conversion of carbon monoxide carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide. Cigarettes are provided that comprise tobacco cut filler and cigarette paper, wherein nanostructured fibrils are deposited on, or incorporated in, at least one of the tobacco cut filler and cigarette paper.
摘要:
Nanoscale particles are formed and deposited in situ on tobacco cut filler, cigarette paper and/or cigarette filter materials by physical vapor deposition. The nanoscale particles are capable of acting as an oxidant for the conversion of carbon monoxide to carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide.