Abstract:
A tool and a process for removing particles from a reticle are described. The tool is disposed in front of a pellicle particle detector, including at least a gas spray member toward a surface of the reticle for removing particles and a supporting member supporting the gas spray member in front of the pellicle particle detector. The supporting member can further fix the tool onto the pellicle particle detector. In the particle removing process, when particles are detected on the reticle, the tool is turned on and the reticle is loaded into the pellicle particle detector through the gas spray member in order to remove the particles from the reticle before the pellicle particle detector detects the particles.
Abstract:
A tool and a process for removing particles from a reticle are described. The tool is disposed in front of a pellicle particle detector, including at least a gas spray member toward a surface of the reticle for removing particles and a supporting member supporting the gas spray member in front of the pellicle particle detector. The supporting member can further fix the tool onto the pellicle particle detector. In the particle removing process, when particles are detected on the reticle, the tool is turned on and the reticle is loaded into the pellicle particle detector through the gas spray member in order to remove the particles from the reticle before the pellicle particle detector detects the particles.
Abstract:
A tool and a process for removing particles from a reticle are described. The tool is disposed in front of a pellicle particle detector, including at least a gas spray member toward a surface of the reticle for removing particles and a supporting member supporting the gas spray member in front of the pellicle particle detector. The supporting member can further fix the tool onto the pellicle particle detector. In the particle removing process, when particles are detected on the reticle, the tool is turned on and the reticle is loaded into the pellicle particle detector through the gas spray member in order to remove the particles from the reticle before the pellicle particle detector detects the particles.
Abstract:
An apparatus for positioning a transport system and a load port is described, including a signal emitting unit disposed on the transport system and a positioning board on the load port. The signal emitting unit has two positioning points thereon capable of emitting two light beams to the positioning board, while the positioning board has two holes thereon at two positions corresponding to the two positioning points. The two light beams can pass through the two holes perpendicular to the positioning board in a horizontal state when the load port is aligned with the transport system.
Abstract:
An apparatus for positioning a transport system and a load port is described, including a signal emitting unit disposed on the transport system and a positioning board on the load port. The signal emitting unit has two positioning points thereon capable of emitting two light beams to the positioning board, while the positioning board has two holes thereon at two positions corresponding to the two positioning points. The two light beams can pass through the two holes perpendicular to the positioning board in a horizontal state when the load port is aligned with the transport system.
Abstract:
A process for removing particles from a reticle is described, wherein the process is performed by using a pellicle particle detector (PPD) and a particle removing tool disposed in front of the PPD as well as fixed to the PPD. The particle removing tool includes at least one gas spray member directed toward a surface of the reticle for removing particles. The process includes steps as follows, step (a) loading the reticle into the PPD through the gas spray member to detect whether the reticle has particles thereon; step (b) ejecting the reticle from the PPD; step (c) turning on the particle removing tool as well as going back to step (a) when particles are detected on the reticle, and ending the particle removal process when no particle is detected on the reticle.
Abstract:
An electrostatic discharge (ESD) protection circuit is disclosed, which comprises an ESD detection circuit and protection switches. If an ESD event occurs, the ESD detection circuit turns off the protection switches so as to protect an application circuit provided in integrated circuits (IC) from being damaged by the electrostatic discharge, and if not, the ESD detection circuit turns on the protection switches so as to make the application circuit provided in integrated circuits (IC) function normally.
Abstract:
A string matching system includes a text string, a plurality of patterns, an m-byte search window and a plurality of Bloom filters, wherein the m-byte search window stands for an m-byte sub-string in the text string under inspection. Every Bloom filter comprises sub-strings of a plurality of patterns. These Bloom filters are queried for membership of the rightmost block in the search window to determine the shift length. The acceleration efficiency of matching many bytes can be achieved simultaneously by shifting the search window for many bytes. Meanwhile, the patterns are stored into an embedded memory through a memory-efficient mechanism-the Bloom filter.
Abstract:
The present invention provides a method of web content filtering, which can be applied to gateway devices at client ends. When an access request for a web page from a browser is sent, by analyzing the web page content returned from the web site, we can decide whether the page is allowed or not, by early blocking and early bypassing algorithms. It allows making the decision as early as we have enough confidence that the web content should belong to some forbidden category or a normal one. Therefore, the web content determination speed can be improved and users' waiting time can be reduced. Moreover, by the present method, the network gateway devices will be allowed to analyze more web content.
Abstract:
A string matching system includes a text string, a plurality of patterns, an m-byte search window and a plurality of Bloom filters, wherein the m-byte search window stands for an m-byte sub-string in the text string under inspection. Every Bloom filter comprises sub-strings of a plurality of patterns. These Bloom filters are queried for membership of the rightmost block in the search window to determine the shift length. The acceleration efficiency of matching many bytes can be achieved simultaneously by shifting the search window for many bytes. Meanwhile, the patterns are stored into an embedded memory through a memory-efficient mechanism —the Bloom filter.