摘要:
Tokens/keys are produced for wireless communications. These tokens/keys are used for watermarks, signature insertion, encryption and other uses. In one embodiment, contextual information is used to generate tokens/keys. The tokens/keys may be derived directly from the contextual information. The contextual information may be used in conjunction with other information to derive the tokens/keys. Tokens/keys may be exchanged between transmit/receive units. The exchange of these tokens/keys may be encrypted.
摘要:
The present invention relates to secret key generation and authentication methods that are based on joint randomness not shared by others (JRNSO), in which unique channel response between two communication terminals generates a secret key. Multiple network access points use a unique physical location of a receiving station to increase user data security. High data rate communication data is encrypted by generating a random key and a pseudo-random bit stream. A configurable interleaving is achieved by introduction of JRNSO bits to an encoder used for error-correction codes. Databases of user data are also protected by JRNSO-based key mechanisms. Additional random qualities are induced on the joint channel using MIMO eigen-beamforming, antenna array deflection, polarization selection, pattern deformation, and path selection by beamforming or time correlation. Gesturing induces randomness according to uniquely random patterns of a human user's arm movements inflected to the user device.
摘要:
A method and system for using watermarks in communication systems is disclosed. Watermarks are typically small amounts of auxiliary data embedded in a cover signal. The cover signal is the primary communication signal, and may be binary bits, multi valued symbols, analog waveforms, or any other type of primary communication signal. Security strength indication, location tracking, intrusion detection and transmission of non-security information using watermarks are disclosed, along with a system for managing watermarks.
摘要:
A system and method for providing variable security levels in a wireless communication network. The present invention optimizes the often conflicting demands of highly secure wireless communications and high speed wireless communications. According to a preferred embodiment of the present invention, various security sensors are scanned to determine the likely presence of an intruder within a predetermined trust zone. If an intruder is likely present, the security level is changed to the highest setting, and consequently a lower data rate, while the intruder is identified. If the identified intruder is in fact a trusted node, the security level is returned to a lower setting. If the identified intruder is not a trusted node, the security level is maintained at an elevated state while the intruder is within the trust zone.
摘要:
At least one At least one user data stream is layer 2/3 processed, physical layer processed and radio frequency processed. A watermark/signature is embedded at at least one of layer 2/3, physical layer or radio frequency, producing an embedded wireless communication. The embedded wireless communication is wirelessly transferred. The embedded wireless communication is received and the watermark/signature is extracted from the embedded wireless communication.
摘要:
In a communication system comprising a plurality of transmit/receive units (TRUs), a method for embedding a watermark into data includes modifying a carrier signal containing data to embed watermark information. The modified carrier signal is transmitted. A receiver receives the modified carrier signal and extracts the watermark information from the modified carrier signal.
摘要:
In a wireless communication system comprising at least one wireless transmit/receive unit (WTRU), a base station, and a radio network controller (RNC), a method for constant envelope orthogonal frequency division multiplexing (CE-OFDM) modulation comprises the WTRU performing an inverse transform on the data. The WTRU next performs constant envelope (CE) modulation on the data and transmits the CE-OFDM data to the base station. The base station receives the data and CE demodulates the data. The base station performs a transform on the demodulated data.
摘要:
A method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless orthogonal frequency division multiplexing (OFDM) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless OFDM communication system includes a transmitter which steganographically embeds digital information in an OFDM communication signal and wirelessly transmits the OFDM communication signal. The system further includes a receiver which receives the OFDM communication signal and extracts the steganographically embedded digital information from the received OFDM communication signal.
摘要:
A spread spectrum method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless code division multiple access (CDMA) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless CDMA communication system includes a transmitter which steganographically embeds digital information in a CDMA communication signal and wirelessly transmits the CDMA communication signal. The system further includes a receiver which receives the CDMA communication signal and extracts the steganographically embedded digital information from the received CDMA communication signal.
摘要:
A method and apparatus is used for generating a perfectly random secret key between two or more transceivers in a wireless communication network. In a point-to-point system, both transceivers produce an estimate of the channel impulse response (CIR) based on the received radio signal. The CIR estimation is synchronized and may include error correction and detection. A long secret key of bits is generated from a digitized version of the CIR estimate, from which a perfectly secret encryption key is derived by privacy amplification.