摘要:
An Optimized Edge Routing (OER) technique provides efficiently data routing at the edge of a network or subnetwork. The technique employs a Master node that manages a set of border nodes located at the edge of the network or subnetwork. The Master node may be a stand-alone network management node or may be incorporated into a network node, such as a border node. Unlike prior implementations, the Master node instructs the border nodes to dynamically acquire (“learn”) prefixes of incoming and outgoing data flows and to selectively filter a set of learned address prefixes whose corresponding data flows match a predetermined set of criteria. The criteria may be based on routing metrics other than, or in addition to, conventional cost-based or distance-based metrics. Further, the criteria may include a set of filtering parameters that may be reconfigured, e.g., by the Master node, from time to time. Using the learned prefixes filtered by the border nodes, the Master node can distribute network traffic and utilize network bandwidth more efficiently than conventionally done.
摘要:
Techniques are provided for updating best path based on real-time congestion feedback. A method comprises monitoring packets received from an internetworked system, wherein the packets are received on one of a plurality of external interfaces of a networking device; detecting that a received packet includes real-time information that signals a present or pending congestion condition on a path from the external interfaces of the networking device to the internetworked system; notifying a control logic of the real-time information; receiving from the control logic control information defining a change in one or more paths from the external interfaces to the internetworked system; and changing the one or more paths from the external interfaces to the internetworked system. Examining ingress traffic on external interfaces of an internetworked system can cause changes to routes, routing policies and PBRs in routers of the first internetworked system in response to real-time congestion.
摘要:
A method for detecting a suspicious packet flow in a packet-switched network comprises the computer-implemented step of receiving a first packet in which the SYN bit but not the ACK or RST bit of the packet's TCP header is set. If a specified first time has elapsed, a packet counter associated with the destination address of the flow is incremented. A determination as to whether the packet counter is greater than a specified threshold values is made. If the packet counter is greater than the threshold value, a notification message is generated. In one embodiment, information identifying a packet flow is aggregated to an aggregation cache based on the destination address of the flow.
摘要:
Techniques are provided for updating best path based on real-time congestion feedback. A method comprises monitoring packets received from an internetworked system, wherein the packets are received on one of a plurality of external interfaces of a networking device; detecting that a received packet includes real-time information that signals a present or pending congestion condition on a path from the external interfaces of the networking device to the internetworked system; notifying a control logic of the real-time information; receiving from the control logic control information defining a change in one or more paths from the external interfaces to the internetworked system; and changing the one or more paths from the external interfaces to the internetworked system. Examining ingress traffic on external interfaces of an internetworked system can cause changes to routes, routing policies and PBRs in routers of the first internetworked system in response to real-time congestion.
摘要:
A method for detecting a suspicious packet flow in a packet-switched network comprises the computer-implemented step of receiving a first packet in which the SYN bit but not the ACK or RST bit of the packet's TCP header is set. If a specified first time has elapsed, a packet counter associated with the destination address of the flow is incremented. A determination as to whether the packet counter is greater than a specified threshold values is made. If the packet counter is greater than the threshold value, a notification message is generated. In one embodiment, information identifying a packet flow is aggregated to an aggregation cache based on the destination address of the flow.
摘要:
A technique dynamically enforces a best exit selection for a controlled prefix based on policies and real-time performance statistics in a computer network. A Master Controller (e.g., an Optimized Edge Routing, OER, Master Controller) of an autonomous system (AS) in the network selects a best exit from the AS for the controlled prefix, and conveys the selection to a border router having the selected exit. In response, the border router performs a parent lookup to determine whether the controlled prefix is reachable via the best exit. If so, the border router influences routing in the AS for the controlled prefix through the best exit by, e.g., injecting routes or modifying metrics of existing routes. The Master Controller (or border router) then verifies that the routes for the controlled prefix traverse the selected best exit. Notably, if a route does not traverse the selected best exit, the border router may try to influence the route again or remove the influence.
摘要:
Techniques for recovering Mobile Internet Protocol (IP) session(s) of a mobility agent in a Mobile IP network are described herein. In one embodiment of the invention, for each mobility session associated with a mobility agent, the mobility agent distributively backs up mobility agent specific information to the mobility agent peer associated with that mobility session. The mobility agent specific information is not used by the mobility agent peer. Upon the mobility agent inadvertently losing at least one mobility session, the mobility agent recovers the stored mobility agent specific information associated with those sessions from the mobility agent peers respectively associated with those sessions. Other methods and apparatuses are also described.
摘要:
Techniques for recovering Mobile Internet Protocol (IP) session(s) of a mobility agent in a Mobile IP network are described herein. In one embodiment of the invention, for each mobility session associated with a mobility agent, the mobility agent distributively backs up mobility agent specific information to the mobility agent peer associated with that mobility session. The mobility agent specific information is not used by the mobility agent peer. Upon the mobility agent inadvertently losing at least one mobility session, the mobility agent recovers the stored mobility agent specific information associated with those sessions from the mobility agent peers respectively associated with those sessions. Other methods and apparatuses are also described.
摘要:
Techniques for recovering Mobile Internet Protocol (IP) session(s) of a mobility agent in a Mobile IP network are described herein. In one embodiment of the invention, for each mobility session associated with a mobility agent, the mobility agent distributively backs up mobility agent specific information to the mobility agent peer associated with that mobility session. The mobility agent specific information is not used by the mobility agent peer. Upon the mobility agent inadvertently losing at least one mobility session, the mobility agent recovers the stored mobility agent specific information associated with those sessions from the mobility agent peers respectively associated with those sessions. Other methods and apparatuses are also described.
摘要:
Techniques for recovering Mobile Internet Protocol (IP) session(s) of a mobility agent in a Mobile IP network are described herein. In one embodiment of the invention, for each mobility session associated with a mobility agent, the mobility agent distributively backs up mobility agent specific information to the mobility agent peer associated with that mobility session. The mobility agent specific information is not used by the mobility agent peer. Upon the mobility agent inadvertently losing at least one mobility session, the mobility agent recovers the stored mobility agent specific information associated with those sessions from the mobility agent peers respectively associated with those sessions. Other methods and apparatuses are also described.