Abstract:
A lighting system is disclosed. The lighting system comprises at least one light source comprising a light emitting diode (LED) and one or more phosphors optically coupled to the LED to convert at least a portion of original light emitted by the LED to provide a modified LED light having a first predetermined spectral output, and an optical material that is optically coupled to at least a portion of a surface of a light guide plate and optically coupled to receive at least a portion of the modified LED light and to convert at least a portion of the modified LED light to at least one predetermined wavelength to provide modified light having a second predetermined spectral output, wherein the optical material comprises one or more types of quantum confined semiconductor nanoparticle. A device including a lighting system is also disclosed.
Abstract:
A lighting system including a light source capable of generating light, and an optical component optically coupled to receive at least a portion of the light generated by the light source and convert at least a portion of the light so received to a predetermined wavelength such that the light emitted by the lighting system includes light emission from the light source supplemented with light emission at the predetermined wavelength, wherein the optical component including an optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is an optical component comprising a light guide plate and an optical material disposed over at least a portion of a surface of the light guide plate, the optical material comprising quantum confined semiconductor nanoparticles capable of emitting light in a predetermined spectral region. Devices are also disclosed.