Abstract:
Method and systems for autofocus triggering focusing are disclosed herein. In one example, a system may include a lens, a memory component configured to store lens parameters of the lens and regions of focus corresponding to the lens parameters, and a processor coupled to the memory and the lens. The processor may be configured to focus the lens on a target object at a first instance of time, receive information indicative of distances from an imaging device to the target object over a period of time, obtain lens parameters of the lens, and determine a region of focus, and trigger the lens to re-focus on the target object if the distance to the target object indicates the target object is outside of the region of focus and the distance to the target object is unchanged for a designated time period.
Abstract:
Described herein are methods and devices that employ a dual shutter button feature associated with an image capture device to recommend a capture mode to a user based on one or more parameters analyzed by the image capture system. As described, providing a primary shutter button and a secondary shutter button enables the user to capture in both a standard capture mode by using the primary shutter button and in an alternate mode by using a secondary shutter button.
Abstract:
Described is a method and apparatus for unattended image capture that can identify subjects or faces within an image captured with an image sensor. The methods and apparatus may then score the image based, at least in part, on scores of detected subjects or faces in the image, scores of facial expressions, a focus score, exposure score, stability score, or audio score. If the score of the image is above a threshold, a snapshot image may be stored to a data store on the imaging device. In some aspects, if the score of the image is below a threshold, one or more audible prompts may be generated indicating that subjects should change positions, smile or remain more still during the image capture process.
Abstract:
Method and systems for autofocus triggering focusing are disclosed herein. In one example, a system may include a lens, a memory component configured to store lens parameters of the lens and regions of focus corresponding to the lens parameters, and a processor coupled to the memory and the lens. The processor may be configured to focus the lens on a target object at a first instance of time, receive information indicative of distances from an imaging device to the target object over a period of time, obtain lens parameters of the lens, and determine a region of focus, and trigger the lens to re-focus on the target object if the distance to the target object indicates the target object is outside of the region of focus and the distance to the target object is unchanged for a designated time period.
Abstract:
Exemplary embodiments are directed to dual camera autofocusing in digital cameras with error detection. An auxiliary lens and image sensor shares a housing with a main lens and image sensor which together act as a range finder to determine the distance to a scene. Scene distance is used in combination with contrast-detection autofocus to achieve maximum sharpness in the image. Errors in distance determination may be found and corrected using a comparison of data collected from the auxiliary lens and main lens.
Abstract:
Described herein are methods and devices that employ a dual shutter button feature associated with an image capture device to recommend a capture mode to a user based on one or more parameters analyzed by the image capture system. As described, providing a primary shutter button and a secondary shutter button enables the user to capture in both a standard capture mode by using the primary shutter button and in an alternate mode by using a secondary shutter button.
Abstract:
Method and systems for autofocus triggering focusing are disclosed herein. In one example, a system may include a lens, a memory component configured to store lens parameters of the lens and regions of focus corresponding to the lens parameters, and a processor coupled to the memory and the lens. The processor may be configured to focus the lens on a target object at a first instance of time, receive information indicative of distances from an imaging device to the target object over a period of time, obtain lens parameters of the lens, and determine a region of focus, and trigger the lens to re-focus on the target object if the distance to the target object indicates the target object is outside of the region of focus and the distance to the target object is unchanged for a designated time period.
Abstract:
Method and systems for autofocus triggering focusing are disclosed herein. In one example, a system may include a lens, a memory component configured to store lens parameters of the lens and regions of focus corresponding to the lens parameters, and a processor coupled to the memory and the lens. The processor may be configured to focus the lens on a target object at a first instance of time, receive information indicative of distances from an imaging device to the target object over a period of time, obtain lens parameters of the lens, and determine a region of focus, and trigger the lens to re-focus on the target object if the distance to the target object indicates the target object is outside of the region of focus and the distance to the target object is unchanged for a designated time period.
Abstract:
Systems and methods for rapid automatic focus, automatic white balance, and automatic exposure control are disclosed. To reduce the time it takes to automatically focus, balance spectra, and set exposure period, a dual camera uses an auxiliary camera and auxiliary image processing module in addition to the main camera and main image processing module. The auxiliary camera may capture lower resolution and lower frame rate imagery that is processed by an auxiliary image processing module to determine focus, white balance, and exposure periods for the main camera and main image processing module. By initiating convergence for automatic focus (AF), automatic white balance (AWB) and automatic exposure control (AEC) before receiving a command to capture imagery, and processing lower resolution and lower frame rate imagery, AF, AWB, and AEC convergence delays are reduced for both standard and high dynamic range image capture.
Abstract:
Described is a method and apparatus for unattended image capture that can identify subjects or faces within an image captured with an image sensor. The methods and apparatus may then score the image based, at least in part, on scores of detected subjects or faces in the image, scores of facial expressions, a focus score, exposure score, stability score, or audio score. If the score of the image is above a threshold, a snapshot image may be stored to a data store on the imaging device. In some aspects, if the score of the image is below a threshold, one or more audible prompts may be generated indicating that subjects should change positions, smile or remain more still during the image capture process.