Neural Network Pruning With Cyclical Sparsity

    公开(公告)号:US20220245457A1

    公开(公告)日:2022-08-04

    申请号:US17456318

    申请日:2021-11-23

    Abstract: Various embodiments include methods and devices for neural network pruning. Embodiments may include receiving as an input a weight tensor for a neural network, increasing a level of sparsity of the weight tensor generating a sparse weight tensor, updating the neural network using the sparse weight tensor generating an updated weight tensor, decreasing a level of sparsity of the updated weight tensor generating a dense weight tensor, increasing the level of sparsity of the dense weight tensor the dense weight tensor generating a final sparse weight tensor, and using the neural network with the final sparse weight tensor to generate inferences. Some embodiments may include increasing a level of sparsity of a first sparse weight tensor generating a second sparse weight tensor, updating the neural network using the second sparse weight tensor generating a second updated weight tensor, and decreasing the level of sparsity the second updated weight tensor.

Patent Agency Ranking