Abstract:
This disclosure provides methods, devices and systems for reducing power consumption when a station (STA) is operating in a listen mode. In some aspects, to reduce power consumption in the listen mode, the STA may alternate between monitoring a wireless channel for packets and not monitoring the wireless channel. When the STA is monitoring the wireless channel for packets in the listen mode, the STA may configure packet detection components to a power-on state. When the STA is not monitoring the wireless channel in the listen mode, the STA may configure packet detection components to a power-off state. During the power-on state of the listen mode, the STA may detect a preamble of a packet that was transmitted over the wireless channel. In response to detecting the preamble of the packet, the STA may switch from the listen mode to a receive mode to process the packet.
Abstract:
This disclosure provides methods, devices and systems for reducing power consumption when a station (STA) is operating in a listen mode. In some aspects, to reduce power consumption in the listen mode, the STA may alternate between monitoring a wireless channel for packets and not monitoring the wireless channel. When the STA is monitoring the wireless channel for packets in the listen mode, the STA may configure packet detection components to a power-on state. When the STA is not monitoring the wireless channel in the listen mode, the STA may configure packet detection components to a power-off state. During the power-on state of the listen mode, the STA may detect a preamble of a packet that was transmitted over the wireless channel. In response to detecting the preamble of the packet, the STA may switch from the listen mode to a receive mode to process the packet.
Abstract:
A configurable pre-emphasis filter component may be configured based upon measured frequency response (e.g., filter effect) associated with at least one analog filter positioned between a digital predistortion component and a power amplification component of a transmission circuitry. The frequency response may be measured using a calibration signal sent via the transmission circuitry, a loopback circuit, and a reception circuitry. Calibration circuitry may be used with one or more loopback circuits to measure the frequency response of various analog components of the transmission circuitry. The calibration circuitry may also include logic to determine a configuration for the PEF component based upon the measured frequency response.