Abstract:
A device controls a lighting condition of smart objects. A networking framework is executed on the device and the smart objects. An RF signal is broadcast from the device to the smart objects. The signal requests the objects to transmit an ultrasound signal. Ultrasound signals from the objects are received in the device via microphones. A range and direction to each object may be determined based on reception times of the ultrasound signals. A map of the location of the objects is generated. The objects are controlled, via the networking framework, based on the map. A user interface overlay that shows the current lighting condition and location of objects using icons is presented on the device display. The icons are interactive controls for the objects, which may be interacted with for control of the corresponding object. The objects may be manually or automatically controlled to achieve a lighting condition.
Abstract:
A device controls a lighting condition of smart objects. A networking framework is executed on the device and the smart objects. An RF signal is broadcast from the device to the smart objects. The signal requests the objects to transmit an ultrasound signal. Ultrasound signals from the objects are received in the device via microphones. A range and direction to each object may be determined based on reception times of the ultrasound signals. A map of the location of the objects is generated. The objects are controlled, via the networking framework, based on the map. A user interface overlay that shows the current lighting condition and location of objects using icons is presented on the device display. The icons are interactive controls for the objects, which may be interacted with for control of the corresponding object. The objects may be manually or automatically controlled to achieve a lighting condition.