Abstract:
Techniques provided herein are directed toward virtually extending an updated set of output positions of a mobile device determined by a VIO by combining a current set of VIO output positions with one or more previous sets of VIO output positions in such a way that ensure all outputs positions among the various combined sets of output positions are consistent. The combined sets can be used for accurate position determination of the mobile device. Moreover, the position determination further may be based on GNSS measurements.
Abstract:
Implementations of the technology described herein provide adjustment to the time-of-departure (ToD) of the start of the acknowledgement frames (ACK) based on the time-of-arrival (ToA) estimation and correction of their corresponding message frames to keep the turnaround time of the acknowledgement frames stable to a predefined order of precision, with special applications for Wi-Fi ranging to achieve double-sided time-of-arrival (ToA) correction accuracy with minimal frame exchanges. A receiving station uses its time-of-arrival (ToA) correction to adjust the transmission time of an acknowledgement message (ACK) so that both the sending station and the receiving station can estimate round trip time (RTT) (or perform ranging) at the same level or higher accuracy.
Abstract:
Disclosed is an apparatus and method for classifying a motion state of a mobile device. In one embodiment, accelerometer data representing acceleration components along orthogonal x, y, and z axes of the mobile device are collected. A presence or absence of a half-step frequency relationship between the accelerometer data is determined. Last, the motion state of the device is determined based at least in part on the presence or absence of the half-step frequency relationship.
Abstract:
Techniques provided herein are directed toward virtually extending an updated set of output positions of a mobile device determined by a VIO by combining a current set of VIO output positions with one or more previous sets of VIO output positions in such a way that ensure all outputs positions among the various combined sets of output positions are consistent. The combined sets can be used for accurate position determination of the mobile device. Moreover, the position determination further may be based on GNSS measurements.