Abstract:
A method for determining candidate radio access technology (RAT) layers includes selecting one or more initial candidate RAT layer, for each configured RAT type of a UE, for a target RAT candidate list. The target can be for redirection or handover, for example. Each initial candidate RAT layer is selected regardless of network indicated RAT priorities and measurement object IDs. The method also includes selecting additional candidate RAT layers, for the list, based on the network indicated RAT priorities or the measurement object IDs. The method may be specified for when a UE is in a connected mode or an idle mode.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, a UE determines a completion time associated with a communication event for a wakeup period, the wakeup period characterized by at least radio frequency (RF) circuitry being set to an active state. The UE schedules a transition from the wakeup period to a sleep period at the completion time, the sleep period characterized by at least the RF circuitry being set to an inactive state. The UE performs the communication event during the wakeup period. The UE transitions from the wakeup period to the sleep period at the completion time in accordance with the scheduling. The UE determines, after the transition from the wakeup period to the sleep period, a wakeup time associated with a next wakeup period.
Abstract:
Certain aspects of the present disclosure provide techniques for an adaptive strategy for enhanced thermal mitigation and overheating signaling. A method that may be performed by a user equipment (UE) includes determining whether one or more trigger conditions are met and following an overheating assistance (OA) configuration received from a network or switching to an internal thermal mitigation configuration based at least in part on the determining.