摘要:
Methods, apparatuses and systems directed to facilitating transitions from IPv4 to IPv6 networks. In particular implementations, the invention facilitates or enables accessibility of network application services between IPv4 and IPv6 hosts, or traversal of network paths including both IPv6 or IPv4 domains. Particular implementations of the invention are directed to selective mapping of network layer addresses between IPv6 and IPv4 protocols and Domain Name System records under one or more policy controls. Other implementations of the invention are directed to a proxy-to-proxy based tunnel architecture allowing hosts implementing a first network layer protocol, such as IPv4, to traverse a network implementing a second network layer protocol, such as IPv6.
摘要:
Methods, apparatuses and systems directed to facilitating transitions from IPv4 to IPv6 networks. In particular implementations, the invention facilitates or enables accessibility of network application services between IPv4 and IPv6 hosts, or traversal of network paths including both IPv6 or IPv4 domains. Particular implementations of the invention are directed to selective mapping of network layer addresses between IPv6 and IPv4 protocols and Domain Name System records under one or more policy controls. Other implementations of the invention are directed to a proxy-to-proxy based tunnel architecture allowing hosts implementing a first network layer protocol, such as IPv4, to traverse a network implementing a second network layer protocol, such as IPv6.
摘要:
Methods, apparatuses and systems directed to facilitating transitions from IPv4 to IPv6 networks. In particular implementations, the invention facilitates or enables accessibility of network application services between IPv4 and IPv6 hosts, or traversal of network paths including both IPv6 or IPv4 domains. Particular implementations of the invention are directed to selective mapping of network layer addresses between IPv6 and IPv4 protocols and Domain Name System records under one or more policy controls. Other implementations of the invention are directed to a proxy-to-proxy based tunnel architecture allowing hosts implementing a first network layer protocol, such as IPv4, to traverse a network implementing a second network layer protocol, such as IPv6.
摘要:
Packets received at a network appliance are classified according to a packet classification rules based on flow state information maintained by the network appliance and evaluated for each packet as it is received at the appliance on the basis of OSI Level 2-Level 4 (L2-L4) information retrieved from the packet. The received packets are acted upon according to outcomes of the classification; and the flow state information is updated according to actions taken on the received packets. The updated flow state information is then made available to modules performing additional processing of one or more of the packets at OSI Layer 7 (L7).
摘要:
Methods, apparatuses and systems directed to facilitating transitions from IPv4 to IPv6 networks. In particular implementations, the invention facilitates or enables accessibility of network application services between IPv4 and IPv6 hosts, or traversal of network paths including both IPv6 or IPv4 domains. Particular implementations of the invention are directed to selective mapping of network layer addresses between IPv6 and IPv4 protocols and Domain Name System records under one or more policy controls. Other implementations of the invention are directed to a proxy-to-proxy based tunnel architecture allowing hosts implementing a first network layer protocol, such as IPv4, to traverse a network implementing a second network layer protocol, such as IPv6.
摘要:
In one embodiment, an intermediary device situated along a communication path between two endpoint devices may receive communication packets sent along the communication path. If the intermediary device receives a connection-initiating packet having a customization indicator and a connection-acknowledgement packet having a customization indicator, then the intermediary device may install a bypass rule.
摘要:
Packets received at a network appliance are classified according to packet classification rules based on flow state information maintained by the network appliance and evaluated for each packet as it is received at the appliance on the basis of OSI Level 2-Level 4 (L2-L4) information retrieved from the packet. The received packets are acted upon according to outcomes of the classification; and the flow state information is updated according to actions taken on the received packets. The updated flow state information is then made available to modules performing additional processing of one or more of the packets at OSI Layer 7 (L7).
摘要:
A peering relationship among two or more network appliances is established through an exchange of control messages among the network appliances. The peering relationship defines a cluster of peered network appliances, and at each network appliance of the cluster traffic flow state information for all the network appliances of the cluster is maintained. Network traffic associated with traffic flows of the network appliances of the cluster is managed according to the state information for the traffic flows. This managing of the network traffic may include forwarding among the network appliances of the cluster (i.e., to those of the appliances handling the respective flows) at least some of the network traffic associated with one or more of the traffic flows according to the state information for the one or more traffic flows. The traffic flows may be TCP connections or UDP flows.
摘要:
In one embodiment, an intermediary device situated along a communication path between two endpoint devices may receive communication packets sent along the communication path. If the intermediary device receives a connection-initiating packet having a customization indicator and a connection-acknowledgement packet having a customization indicator, then the intermediary device may install a bypass rule.
摘要:
A peering relationship among two or more network appliances is established through an exchange of control messages among the network appliances. The peering relationship defines a cluster of peered network appliances, and at each network appliance of the cluster traffic flow state information for all the network appliances of the cluster is maintained. Network traffic associated with traffic flows of the network appliances of the cluster is managed according to the state information for the traffic flows. This managing of the network traffic may include forwarding among the network appliances of the cluster (i.e., to those of the appliances handling the respective flows) at least some of the network traffic associated with one or more of the traffic flows according to the state information for the one or more traffic flows. The traffic flows may be TCP connections or UDP flows.