Abstract:
The present invention discloses a method of filming a high dynamic range video. The method includes: using an image sensor to capture an original frame which is interlaced by a plurality of long exposure areas and a plurality of short exposure areas; forming a long exposure field via a plurality of long exposure areas and forming a short exposure field via a plurality of short exposure areas; forming a reconstructed long exposure field and a reconstructed short exposure field having the same resolution as the original frame via a reconstruction process by a pixel value of each pixel in the long exposure field and the short exposure field; and forming a high dynamic range image based on the pixel value of each pixel of the reconstructed long exposure field and the reconstructed short exposure field via a merging process.
Abstract:
An exposure-control system and an associated exposure control method are provided. The exposure-control system includes: an image capturing unit configured to capture a long-exposure image and a short-exposure image with a first exposure value and a second exposure value, respectively; and a processor, configured to calculate histograms of the long-exposure image and the short-exposure image, and calculate an exposure ratio according to the calculated histograms, the first and second exposure values, wherein when the exposure ratio is smaller than a first threshold, the processor switches a current exposure mode to a low dynamic range mode. When the exposure ratio is larger than a second threshold, the processor switches the current exposure mode to a high dynamic range mode. When the exposure ratio is between the first threshold and the second threshold, the processor does not switch the current exposure mode.
Abstract:
A method for controlling an exposure duration of a high dynamic range image, including: consecutively generating a first high dynamic range image having a first exposure duration ratio and a second high dynamic range image having a second exposure duration ratio greater than the first exposure duration ratio; performing image quality evaluations on both the first high dynamic range image and the second high dynamic range image to obtain a first image quality and a second image quality, respectively; and determining whether the second image quality is better than the first image quality; if yes, generating a third high dynamic range image having a third exposure duration ratio greater than the second exposure duration ratio; if not, generating the third high dynamic range image having the first exposure duration ratio and setting the first exposure duration ration as the optimal exposure duration ratio.
Abstract:
A white-balance method for use in a multi-exposure imaging system having an image capturing unit is provided. The method includes the steps of: utilizing the image capturing unit to simultaneously capture a first image and a second image of a scene with a first exposure value and a second exposure value, respectively, wherein the second exposure value is smaller than the first exposure value, and the first exposure value and the second exposure value have individual exposure time and exposure gain; performing light source detection on the second image to obtain light source information and a corresponding light source color ratio of the scene; and performing a color gain process on the first image according to the light source color ratio to generate an output image.
Abstract:
A white-balance method for use in a multi-exposure imaging system having an image capturing unit is provided. The method includes the steps of: utilizing the image capturing unit to simultaneously capture a first image and a second image of a scene with a first exposure value and a second exposure value, respectively, wherein the second exposure value is smaller than the first exposure value, and the first exposure value and the second exposure value have individual exposure time and exposure gain; performing light source detection on the second image to obtain light source information and a corresponding light source color ratio of the scene; and performing a color gain process on the first image according to the light source color ratio to generate an output image.
Abstract:
A saturation compensation method is provided. The method includes the steps of: retrieving an input image; performing at least one first image process on the input image to generate a first image; calculating saturation corresponding to each pixel in the input image; and performing a saturation compensation process on the first image according to the input image and the saturation to generate an output image.
Abstract:
A people counting system includes: a top-view, a first and a second side-view image-capturing device, capturing a top-view, a first and a second side-view image respectively; an image stitching module, stitching the top-view, the first and the second side-view image into an ultra wide-angle image; a ROI selecting module, selecting at least one recognition zone and a counting zone; a face recognition module, monitoring the recognition zone to determine a face location corresponding to a face through analyzing the recognition zone; a head recognition module, monitoring the counting zone to determine a head location corresponding to a head through analyzing the counting zone; an object tracking module, the head recognition module, generating a face track and a head track; and a people counting module, counting a first number of face tracks and a second number of head tracks passing through the counting zone and generating a counting result.
Abstract:
A saturation compensation method is provided. The method includes the steps of: retrieving an input image; performing at least one first image process on the input image to generate a first image; calculating saturation corresponding to each pixel in the input image; and performing a saturation compensation process on the first image according to the input image and the saturation to generate an output image.
Abstract:
The present invention discloses a method of filming a high dynamic range video. The method includes: using an image sensor to capture an original frame which is interlaced by a plurality of long exposure areas and a plurality of short exposure areas; forming a long exposure field via a plurality of long exposure areas and forming a short exposure field via a plurality of short exposure areas; forming a reconstructed long exposure field and a reconstructed short exposure field having the same resolution as the original frame via a reconstruction process by a pixel value of each pixel in the long exposure field and the short exposure field; and forming a high dynamic range image based on the pixel value of each pixel of the reconstructed long exposure field and the reconstructed short exposure field via a merging process.
Abstract:
A method for controlling an exposure duration of a high dynamic range image, including: consecutively generating a first high dynamic range image having a first exposure duration ratio and a second high dynamic range image having a second exposure duration ratio greater than the first exposure duration ratio; performing image quality evaluations on both the first high dynamic range image and the second high dynamic range image to obtain a first image quality and a second image quality, respectively; and determining whether the second image quality is better than the first image quality; if yes, generating a third high dynamic range image having a third exposure duration ratio greater than the second exposure duration ratio; if not, generating the third high dynamic range image having the first exposure duration ratio and setting the first exposure duration ration as the optimal exposure duration ratio.