Abstract:
An air handling system comprises a housing and a fan configured to circulate air. The housing comprises at least one wall defining a passageway for the air and at least one vortex generator coupled to the at least one wall. The at least one vortex generator extends partially into the passageway.
Abstract:
A centrifugal blower assembly comprises a scroll wall and a pair of opposing sidewalls. The scroll wall is positioned between the pair of opposing sidewalls such that the scroll wall and opposing sidewalls together define a blower chamber and a blower outlet. A baffle element is positioned within the blower chamber and adjacent the blower outlet such that the baffle element is configured to facilitate uniform distribution of airflow downstream of the blower assembly. An air stream splitter is coupled to the scroll wall. The air stream splitter includes a spline member extending a varying distance from the scroll wall. The air stream splitter is positioned within the blower chamber to facilitate uniform airflow distribution within the blower assembly.
Abstract:
According to another embodiment of the present invention, an electric machine is provided. The machine includes a housing and a stator. The stator is fixedly secured to the housing. The machine also includes a rotor. The rotor is rotatably secured to the housing. At least one of the housing, the stator and the rotor include an inner wall defining a passageway adapted for improved fluid flow therethrough.
Abstract:
A centrifugal blower system includes a centrifugal blower assembly for generating airflow. The centrifugal blower assembly includes a housing, a motor coupled to the housing, and at least one impeller coupled to the motor. A motor controller is coupled to the motor. The motor controller is configured to receive at least one feedback parameter and to transmit instructions to the motor to control an operation of the motor based on the at least one feedback parameter. The operation of the motor is configured to reduce noise in the centrifugal blower system.
Abstract:
A blower assembly for advancing the flow of air in an air flow device at a selected one of a plurality of air flow rates. The blower assembly includes a blower housing defining a body thereof and a wall of the blower housing moveably secured to the body, a blower wheel rotatably mounted to the blower housing and a motor for rotating the blower wheel at a selected one of a plurality of rotational speeds. The blower assembly further includes a motion device secured to the body and to the wall. The motion device moves the wall relative to the body to a selected one of a plurality of distinct wall positions. The motor rotates the blower wheel at a selected one of a plurality of rotational speeds. A controller calculates an optimum wall position and rotational speed to provide for minimal energy usage rate.
Abstract:
A centrifugal blower assembly includes a scroll wall and at least one sidewall. The scroll wall is coupled to the at least one sidewall such that the scroll wall and the at least one sidewall at least partially define a blower chamber. The centrifugal blower assembly also includes an air stream splitter coupled to the scroll wall. The air stream splitter includes a base member fixedly coupled to the scroll wall and positioned within the blower chamber and a spline member extending a varying distance from the scroll wall and perpendicularly from the base member. An outer surface of the airstream splitter contacts an inner surface of the scroll wall.
Abstract:
A blower assembly for advancing the flow of air in an air flow device at a selected one of a plurality of air flow rates is provided. The blower assembly includes a blower housing defining a body thereof and a wall of the blower housing moveably secured to the body, a blower wheel rotatably mounted to the blower housing and a motor for rotating the blower wheel at a selected one of a plurality of rotational speeds. The blower assembly further includes a motion device secured to the body and to the wall. The motion device moves the wall relative to the body to a selected one of a plurality of distinct wall positions. The motor rotates the blower wheel at a selected one of a plurality of rotational speeds. A controller calculates optimum wall position and rotational speed to provide for minimal energy usage rate.
Abstract:
An air handling system comprises a housing and a fan configured to circulate air. The housing comprises at least one wall defining a passageway for the air and at least one vortex generator coupled to the at least one wall. The at least one vortex generator extends partially into the passageway.
Abstract:
A centrifugal fan is described. The fan uses a blade that is tapered across the span of the blade. The taper can be larger towards the end opposite of the inlet or larger at the inlet. The blade may be backwardly inclined and/or curved. The fan may also include a turning vane.
Abstract:
In one aspect, a flexible fan blade for use in a centrifugal fan impeller having at least one of a rear plate and a front plate with an air inlet is provided. The flexible fan blade comprises a fixed central portion fixedly coupled to at least one of the front plate and the rear plate of the centrifugal fan impeller. The flexible fan blade also includes a trailing edge extending from the fixed central portion and being moveable between a first position and a second position. The trailing edge is fabricated from a compliant material. Furthermore, the trailing edge is flexible in relation to the fixed central portion between a first position and a second position. The flexible fan blade also includes a leading edge extending from the fixed central portion in opposed relation to the trailing edge.