Abstract:
An additive manufacturing apparatus has a build chamber, a build platform lowerable in the build chamber such that layers of flowable material can be successively formed across the build platform, a laser for generating a laser beam, a scanning unit for directing the laser beam onto each layer to solidify the material in selected areas and a processor for controlling the scanning unit. The processor is arranged to control the scanning unit to direct the laser beam to solidify material of a layer along a scan path, the laser beam advanced along at least a section of the scan path in an opposite direction to a direction in which the laser beam is advanced along a corresponding section of a corresponding scan path of a previous layer. The scan path may be a border scan path extending around a border of one of the selected areas of the layer.
Abstract:
An additive manufacturing apparatus including a build chamber, build platform lowerable in the chamber so layers of flowable material can successively form across the platform, laser for generating a laser beam, scanning unit for directing the laser beam onto each layer to selectively solidify the material and a processor for controlling the scanning unit. The processor controls the scanning unit directs the laser beam to solidify a selected area of material by advancing the laser beam many times along a scan path. On each pass, the laser beam solidifies spaced apart sections of the scan path, each subsequent pass solidifying sections that are located between sections solidified on a previous pass. The processor controls the scanning unit to direct the laser beam to solidify selected area of material by solidifying sub-millimetre sized sections of non-continuously area and in an order such that consecutively solidified sections are spaced apart.
Abstract:
An additive manufacturing apparatus including a build chamber, build platform lowerable in the chamber so layers of flowable material can successively form across the platform, laser for generating a laser beam, scanning unit for directing the laser beam onto each layer to selectively solidify the material and a processor for controlling the scanning unit. The processor controls the scanning unit directs the laser beam to solidify a selected area of material by advancing the laser beam many times along a scan path. On each pass, the laser beam solidifies spaced apart sections of the scan path, each subsequent pass solidifying sections that are located between sections solidified on a previous pass. The processor controls the scanning unit to direct the laser beam to solidify selected area of material by solidifying sub-millimetre sized sections of non-continuously area and in an order such that consecutively solidified sections are spaced apart.
Abstract:
A method of building a workpiece in an additive manufacturing process, in which the workpiece is built through layer-by-layer solidification of material. The method includes, for a bridging layer in which an area to be solidified bridges material solidified as separate islands in an immediately preceding layer, first, solidifying separated portions of the area, each separated portion connected with a different one of the islands of the preceding layer, and then solidifying material between the separated portions to join the separated portions together.
Abstract:
A device and method for generating scan data and/or slice data for use in an additive manufacturing process, in which an energy beam is scanned across layers of flowable material to consolidate the material in a layer-by-layer manner to build a part. The device includes a display and a processor. The processor is arranged to determine scan data for slices and/or slices of the part to be built in the additive manufacturing process and cause the display to display scan data and/or slices that has been determined whilst determining scan data for other ones of the slices and/or other ones of the slices from the geometric data.
Abstract:
A method and apparatus for generating geometric data are to be used in the building of an object using a layer-by-layer additive manufacturing process. The method includes providing object data defining the object, identifying from the object data one or more regions of a surface of the object to be supported during the additive manufacturing process and, for the or each region, identifying one or more supporting structures that will provide support for the region and generating an arrangement of supports within the region. A support location of each support of the arrangement relative to the other supports of the arrangement is derived from a location of the supporting structures.