Abstract:
This invention concerns apparatus for generating instructions for machines of a manufacturing chain used to manufacture a workpiece. The apparatus comprising a processor arranged to receive a model based definition (MBD) of a workpiece including geometric dimensions and tolerances; receive inputs setting an additive build design for building the workpiece based upon the geometric dimensions; generate additive instructions for an additive manufacturing machine of the manufacturing chain based upon the additive build design; determine a prospective intermediate workpiece product expected from an additive build in accordance with the additive build design; determine differences between the prospective intermediate workpiece product and the model based definition of the workpiece; and generate further instructions for at least one further machine of the manufacturing chain based upon the differences.
Abstract:
A method builds a workpiece using an additive manufacturing process, wherein the workpiece is built up by consolidating material in a layer-by-layer manner. The method includes receiving an initial geometric model defining surface geometry of the workpiece, determining workpiece slices to be consolidated as layers of the workpiece during the additive manufacturing process from the initial geometric model, determining adjusted positions of the workpiece slices adjusted from initial positions of the workpiece slices as determined from the initial geometric model, the determination of the adjusted positions based upon warping of the workpiece expected to occur during or after the additive manufacturing process, and building the workpiece using the additive manufacturing process, wherein the workpiece slices are formed in the adjusted positions.
Abstract:
An apparatus and methods for generating geometric data for use in an additive manufacturing process. The apparatus includes a processing unit. The processing unit may be arranged for receiving data defining surface geometry of a plurality of objects to be built together in an additive manufacturing process, providing a user interface that allows a user to define a location of each object within a common build volume and carrying out a slicing operation on at least one of the objects located in the common build volume independently from another one of objects located in the common build volume. The slicing operation determines sections of the at least one object to be built in the additive manufacturing process. In one embodiment, the objects are defined in a hierarchical data structure. Supports for supporting the objects during the build may be defined with reference to a 2-dimensional support cross-section.
Abstract:
A method of monitoring an additive manufacturing apparatus. The method includes receiving one or more sensor signals from the additive manufacturing apparatus during a build of a workpiece, comparing the one or more sensor signals to a corresponding acceptable process variation of a plurality of acceptable process variations and generating a log based upon the comparisons. Each acceptable process variation of the plurality of acceptable process variations is associated with at least one state of progression of the build of the workpiece and the corresponding acceptable process variation is the acceptable process variation associated with the state of progression of the build when the one or more sensor signals are generated.
Abstract:
This invention concerns an additive manufacturing apparatus for building a part by selectively consolidating flowable material in a layer-by-layer process comprising a build chamber (101) for building the part, a module (105, 106) for providing a focussed energy beam for consolidating flowable material in the build chamber, a gas flow circuit for generating a gas flow through the build chamber (101). At least one filter assembly (200, 201) may be arranged in the gas flow circuit, the or each filter assembly (200, 201) having associated therewith a valve (V-4, V-8) operable to seal the gas circuit upstream from the filter assembly (200, 201) and a valve (V-5, V-9) operable to seal the gas flow circuit downstream of the filter assembly (200, 201), the arrangement allowing a filter element (E-5, E-7) of the filter assembly (200, 201) to be changed whilst maintaining a controlled atmosphere in the build chamber (101). The apparatus may further comprise a purging device (210) configured to purge air from the or each filter assembly (200, 201) when the valves (V-4, V-5; V-8, V-9) associated with that filter assembly (200, 201) have sealed the filter assembly (200, 201) from the gas flow. Alternatively or additionally, a controller (131) may be arranged to control the valves (V-4, V-5; V-8, V-9) associated with the or each filter assembly (200, 201) such that the filter assemblies (200, 201) are closed off to gas flow from the build chamber (101) during a period in which the inert gas atmosphere in the build chamber (101) is compromised as a result of opening the door to the build chamber (101). The apparatus may comprise a pair of filter assemblies (200, 201) arranged in parallel within the gas flow circuit, the arrangement allowing a filter element (E-5, E-7) of the each filter assembly (200, 201) to be changed during a build by allowing the filter element (E-5, E-7) of one filter assembly (200, 201) to be changed whilst the filter element (E-5, E-7) of the other filter assembly (200, 201) is connected to filter particulates from the gas flow. A monitoring device (I-3, I-5) may be provided for detecting a property associated with the gas flow and a controller (131) arranged to control the valves to switch the filter assembly (200, 201) connected in line with the gas flow based upon signals from the monitoring device (I-3, I-5).
Abstract:
A method of monitoring an additive manufacturing apparatus. The method includes receiving one or more sensor signals from the additive manufacturing apparatus during a build of a workpiece, comparing the one or more sensor signals to a corresponding acceptable process variation of a plurality of acceptable process variations and generating a log based upon the comparisons. Each acceptable process variation of the plurality of acceptable process variations is associated with at least one state of progression of the build of the workpiece and the corresponding acceptable process variation is the acceptable process variation associated with the state of progression of the build when the one or more sensor signals are generated.
Abstract:
An apparatus and methods for generating geometric data for use in an additive manufacturing process. The apparatus includes a processing unit. The processing unit may be arranged for receiving data defining surface geometry of a plurality of objects to be built together in an additive manufacturing process, providing a user interface that allows a user to define a location of each object within a common build volume and carrying out a slicing operation on at least one of the objects located in the common build volume independently from another one of objects located in the common build volume. The slicing operation determines sections of the at least one object to be built in the additive manufacturing process. In one embodiment, the objects are defined in a hierarchical data structure. Supports for supporting the objects during the build may be defined with reference to a 2-dimensional support cross-section.
Abstract:
A method controls an additive manufacturing apparatus, in which an object is built by consolidating material in a layer-by-layer manner. The method includes receiving commands to be executed by the additive manufacturing apparatus to cause the additive manufacturing apparatus to carry out a build of an object, wherein each command includes an identifier identifying a time during the build at which the command is to be executed, and executing each command on the additive manufacturing apparatus in accordance with the time identified by the associated identifier. Further, an apparatus and a data carrier carry out the method.
Abstract:
A method builds a workpiece using an additive manufacturing process, wherein the workpiece is built up by consolidating material in a layer-by-layer manner. The method includes receiving an initial geometric model defining surface geometry of the workpiece, determining workpiece slices to be consolidated as layers of the workpiece during the additive manufacturing process from the initial geometric model, determining adjusted positions of the workpiece slices adjusted from initial positions of the workpiece slices as determined from the initial geometric model, the determination of the adjusted positions based upon warping of the workpiece expected to occur during or after the additive manufacturing process, and building the workpiece using the additive manufacturing process, wherein the workpiece slices are formed in the adjusted positions.
Abstract:
A method controls an additive manufacturing apparatus, in which an object is built by consolidating material in a layer-by-layer manner. The method includes receiving commands to be executed by the additive manufacturing apparatus to cause the additive manufacturing apparatus to carry out a build of an object, wherein each command includes an identifier identifying a time during the build at which the command is to be executed, and executing each command on the additive manufacturing apparatus in accordance with the time identified by the associated identifier. Further, an apparatus and a data carrier carry out the method.