Abstract:
A friction ring transmission for a vehicle operable using motor power and/or pedal power, including a crankshaft for pedal cranks, in particular, for an electric bicycle, the friction ring transmission including an inner friction ring and an outer friction ring, and at least one rotatable double tapered roller situated on a roller carrier, which frictionally engages with the inner friction wheel and the outer friction ring, in each case with a contact force, when a torque is transmitted via the friction ring transmission, a force return device for transmitting a contact force from one friction ring to the other friction ring being situated in a power flow path from the inner friction ring to the outer friction ring, one of the friction rings being rotatably fixedly situated in relation to the force return device and the other friction ring being rotatably situated in relation to the force return device.
Abstract:
A drive assemblage is described for a vehicle drivable by muscle energy and/or—in particular additionally—by motor energy, to an electric bicycle, e-bike, or pedelec, having: a crank spindle rotatable around a rotation axis for receiving a first torque that is generated in particular by muscle energy; and a transfer device that is embodied to transfer the first torque from the crank spindle to an output drive element couplable to a drive wheel of the vehicle, and is embodied, by way of an—in particular automatically—shiftable spur gear transmission, for a variable conversion ratio, in which: the spur gear transmission has a first shiftable spur gear transmission and a second shiftable spur gear transmission separate therefrom; the first shiftable spur gear transmission and the second shiftable spur gear transmission have a common transmission output to the couplable output drive element; and the first shiftable spur gear transmission and the second shiftable spur gear transmission are couplable alternatingly and alternatively into the power and torque flow of the transfer device.
Abstract:
A vehicle which is operable by a motor and/or muscular energy, in particular an electric bicycle, which includes an electric motor, a crankshaft drive having a first crank, a second crank, and a crankshaft, a torque sensor for detecting a torque applied by a rider at the crankshaft drive, and a control unit, which is set up to actuate the electric motor based on at least the values acquired by the torque sensor to drive the vehicle, the torque sensor being situated at the crankshaft drive and the torque sensor including at least one surface acoustic wave sensor.
Abstract:
A drive assemblage is described for a vehicle drivable by muscle energy and/or—in particular additionally—by motor energy, to an electric bicycle, e-bike, or pedelec, having: a crank spindle rotatable around a rotation axis for receiving a first torque that is generated in particular by muscle energy; and a transfer device that is embodied to transfer the first torque from the crank spindle to an output drive element couplable to a drive wheel of the vehicle, and is embodied, by way of an—in particular automatically—shiftable spur gear transmission, for a variable conversion ratio, in which: the spur gear transmission has a first shiftable spur gear transmission and a second shiftable spur gear transmission separate therefrom; the first shiftable spur gear transmission and the second shiftable spur gear transmission have a common transmission output to the couplable output drive element; and the first shiftable spur gear transmission and the second shiftable spur gear transmission are couplable alternatingly and alternatively into the power and torque flow of the transfer device.
Abstract:
A vehicle which is operable by a motor and/or muscular energy, in particular an electric bicycle, which includes an electric motor, a crankshaft drive having a first crank, a second crank, and a crankshaft, a torque sensor for detecting a torque applied by a rider at the crankshaft drive, and a control unit, which is set up to actuate the electric motor based on at least the values acquired by the torque sensor to drive the vehicle, the torque sensor being situated at the crankshaft drive and the torque sensor including at least one surface acoustic wave sensor.
Abstract:
A friction-ring gear unit for a vehicle that is operable by motor power and/or pedaling power, in particular for an electrical bicycle having an electric motor, comprising a crankshaft for pedal cranks, and an inner friction ring (26) and an outer friction ring, as well as at least one rotatable dualcone roller which is situated on a roller carrier and is in frictional engagement with the inner friction ring and the outer friction ring, the friction-ring gear unit being situated coaxially around the crankshaft.