Abstract:
The method for manufacturing a timepiece component is capable of thermocompensating a functional assembly including the timepiece component. The method includes at least the following actions: a) providing (e1) a substrate (1) of semiconductor or metallic material; b) proceeding with the deposition (e2) of a polycrystalline or monocrystalline silicon layer (5) on the substrate (1); c) releasing (e4) the timepiece component (10) from the substrate (1).
Abstract:
A balance spring for an oscillator of a timepiece, wherein it comprises a component part, in particular at least a coil or a portion of a coil, provided with heavily doped silicon having an ion density greater than or equal to 1018 at/cm3, in order to permit the thermo-compensation of the oscillator.
Abstract:
A method for determining an imbalance characteristic of a hairspring (5) balance (4) oscillator (3) of a timepiece movement (2), the method comprising at least the following steps: —Setting the hairspring balance oscillator in an oscillating motion at at least two amplitudes, —Determining, for each amplitude and for at least two positions of the oscillator, a piece of data representative of the oscillation period of the oscillator, —Using the data from the previous step to calculate the imbalance characteristic of the hairspring balance oscillator.
Abstract:
A regulating system (110) for a horology movement (12) comprising a first sub-system (11) including: a first oscillator (O111) which includes a first balance (B111) and a first balance spring (S111); a first element (M111) for displacement of the first balance spring (S111); and a first element (A111) for activation of the first displacement element (M111), at an instant, or substantially at an instant, when the speed of the first balance (B111) is zero.
Abstract:
A bearing (1a) for guiding a timepiece shaft about an axis, notably a guide bearing for a portion of a timepiece resonator shaft, comprising at least one pressing element (13a) arranged in such a way as to constantly exert an action on the shaft, radially or substantially radially with respect to the axis.
Abstract:
A regulating system (110) for a horology movement (12) comprising a first sub-system (11) including: a first oscillator (O111) which includes a first balance (B111) and a first balance spring (S111); a first element (M111) for displacement of the first balance spring (S111); and a first element (A111) for activation of the first displacement element (M111), at an instant, or substantially at an instant, when the speed of the first balance (B111) is zero.
Abstract:
A balance spring for an oscillator of a timepiece, wherein it comprises a component part, in particular at least a coil or a portion of a coil, provided with heavily doped silicon having an ion density greater than or equal to 1018 at/cm3, in order to permit the thermo-compensation of the oscillator.
Abstract:
A process for manufacturing a timepiece oscillator made up of a balance and of at least two spring portions that are arranged in parallel, which includes (a) choosing the frequency f of the oscillator, (b) choosing a balance and spring portions so that the inertia of the balance and the angular stiffnesses of the spring portions allow an oscillator of chosen frequency f to be formed and so that the variations in angular stiffness of the spring portions as a function of temperature are able to thermo-compensate the oscillator, and (c) assembling the chosen spring portions with the chosen balance.
Abstract:
A method for determining an imbalance characteristic of a hairspring (5) balance (4) oscillator (3) of a timepiece movement (2), the method comprising at least the following steps: —Setting the hairspring balance oscillator in an oscillating motion at at least two amplitudes, —Determining, for each amplitude and for at least two positions of the oscillator, a piece of data representative of the oscillation period of the oscillator, —Using the data from the previous step to calculate the imbalance characteristic of the hairspring balance oscillator.
Abstract:
A bearing (1a) for guiding a timepiece shaft about an axis, notably a guide bearing for a portion of a timepiece resonator shaft, comprising at least one pressing element (13a) arranged in such a way as to constantly exert an action on the shaft, radially or substantially radially with respect to the axis.