Abstract:
Some embodiments provide systems for use in controlling irrigation, comprising: an irrigation controller configured to couple with one or more valves at a site and to control activation and deactivation of the one or more valves in accordance with an irrigation schedule stored in the irrigation controller; a wireless adapter directly communicationally coupled through a direct wired connection with the irrigation controller; and a network adapter wirelessly coupled over a point-to-point wireless communication path with the wireless adapter, wherein the network adapter is configured to further couple through a direct wired connection with a local router configured to provide communication over a distributed network to a remote server; wherein the wireless adapter is configured to poll the irrigation controller to acquire and locally store status information; and the wireless adapter is configured to communicate, over the point-to-point wireless channel, the status information to the server.
Abstract:
Methods and apparatus are provided herein for sensing rain fall for use in irrigation control. In one embodiment, a wireless rain sensor comprises a housing at least partially covering a first sensor, a controller and a wireless transmitter. The first sensor comprises a moisture absorptive material located to be contacted by rain fall and configured to expand in response to the contact with the rain fall and contract in response to an absence of the rain fall. The controller is coupled to the first sensor and configured to output signals corresponding to a variable amount of expansion and contraction of the moisture absorptive material. The wireless transmitter is configured to transmit wireless signals, at least one wireless signal comprising data corresponding to the variable amount of expansion and contraction of the moisture absorptive material.
Abstract:
Methods and apparatus are provided herein for sensing rain fall for use in irrigation control. In one embodiment, a wireless rain sensor comprises a housing at least partially covering a first sensor, a controller and a wireless transmitter. The first sensor comprises a moisture absorptive material located to be contacted by rain fall and configured to expand in response to the contact with the rain fall and contract in response to an absence of the rain fall. The controller is coupled to the first sensor and configured to output signals corresponding to a variable amount of expansion and contraction of the moisture absorptive material. The wireless transmitter is configured to transmit wireless signals, at least one wireless signal comprising data corresponding to the variable amount of expansion and contraction of the moisture absorptive material.
Abstract:
Some embodiments provide systems for use in controlling irrigation, comprising: an irrigation controller configured to couple with one or more valves at a site and to control activation and deactivation of the one or more valves in accordance with an irrigation schedule stored in the irrigation controller; a wireless adapter directly communicationally coupled through a direct wired connection with the irrigation controller; and a network adapter wirelessly coupled over a point-to-point wireless communication path with the wireless adapter, wherein the network adapter is configured to further couple through a direct wired connection with a local router configured to provide communication over a distributed network to a remote server; wherein the wireless adapter is configured to poll the irrigation controller to acquire and locally store status information; and the wireless adapter is configured to communicate, over the point-to-point wireless channel, the status information to the server.
Abstract:
Methods and apparatus are provided herein for sensing rain fall for use in irrigation control. In one embodiment, a wireless rain sensor comprises a housing at least partially covering a first sensor, a controller and a wireless transmitter. The first sensor comprises a moisture absorptive material located to be contacted by rain fall and configured to expand in response to the contact with the rain fall and contract in response to an absence of the rain fall. The controller is coupled to the first sensor and configured to output signals corresponding to a variable amount of expansion and contraction of the moisture absorptive material. The wireless transmitter is configured to transmit wireless signals, at least one wireless signal comprising data corresponding to the variable amount of expansion and contraction of the moisture absorptive material.
Abstract:
Some embodiments provide systems for use in controlling irrigation, comprising: an irrigation controller configured to couple with one or more valves at a site and to control activation and deactivation of the one or more valves in accordance with an irrigation schedule stored in the irrigation controller; a wireless adapter directly communicationally coupled through a direct wired connection with the irrigation controller; and a network adapter wirelessly coupled over a point-to-point wireless communication path with the wireless adapter, wherein the network adapter is configured to further couple through a direct wired connection with a local router configured to provide communication over a distributed network to a remote server; wherein the wireless adapter is configured to poll the irrigation controller to acquire and locally store status information; and the wireless adapter is configured to communicate, over the point-to-point wireless channel, the status information to the server.
Abstract:
Some embodiments provide an interface unit interfacing with an irrigation controller, comprising: a housing; a controller configured to instruct an interruption of a watering schedule executed by the irrigation controller, the interruption based on one or both of sensed temperature and sensed rainfall amount, and based on one or both of user entered temperature and rainfall threshold parameters; a switching device coupled with the controller, and configured to cause the interruption in response to signaling from the controller; and a user interface comprising: a plurality of user input devices configured to provide signaling to the controller based upon user's engagement, and configured to allow the user to define the temperature and rainfall threshold parameters; and a user display comprising a display screen; wherein the controller is configured to cause the display screen to display a plurality of pictorial representations that in combination convey whether irrigation is being interrupted.
Abstract:
Some embodiments provide an interface unit interfacing with an irrigation controller, comprising: a housing; a controller configured to instruct an interruption of a watering schedule executed by the irrigation controller, the interruption based on one or both of sensed temperature and sensed rainfall amount, and based on one or both of user entered temperature and rainfall threshold parameters; a switching device coupled with the controller, and configured to cause the interruption in response to signaling from the controller; and a user interface comprising: a plurality of user input devices configured to provide signaling to the controller based upon user's engagement, and configured to allow the user to define the temperature and rainfall threshold parameters; and a user display comprising a display screen; wherein the controller is configured to cause the display screen to display a plurality of pictorial representations that in combination convey whether irrigation is being interrupted.
Abstract:
Methods and apparatus are provided herein for sensing rain fall for use in irrigation control. In one embodiment, a wireless rain sensor comprises a housing at least partially covering a first sensor, a controller and a wireless transmitter. The first sensor comprises a moisture absorptive material located to be contacted by rain fall and configured to expand in response to the contact with the rain fall and contract in response to an absence of the rain fall. The controller is coupled to the first sensor and configured to output signals corresponding to a variable amount of expansion and contraction of the moisture absorptive material. The wireless transmitter is configured to transmit wireless signals, at least one wireless signal comprising data corresponding to the variable amount of expansion and contraction of the moisture absorptive material.
Abstract:
Some embodiments provide systems for use in controlling irrigation, comprising: an irrigation controller configured to couple with one or more valves at a site and to control activation and deactivation of the one or more valves in accordance with an irrigation schedule stored in the irrigation controller; a wireless adapter directly communicationally coupled through a direct wired connection with the irrigation controller; and a network adapter wirelessly coupled over a point-to-point wireless communication path with the wireless adapter, wherein the network adapter is configured to further couple through a direct wired connection with a local router configured to provide communication over a distributed network to a remote server; wherein the wireless adapter is configured to poll the irrigation controller to acquire and locally store status information; and the wireless adapter is configured to communicate, over the point-to-point wireless channel, the status information to the server.