摘要:
An apparatus for scalable encoding a spectrum of a signal including audio and/or video information, with the spectrum comprising binary spectral values, includes a means for generating a first sub-scaling layer and a second sub-scaling layer in addition to a means for forming the encoded signal, with the means for forming being implemented so as to include the first sub-scaling layer and the second sub-scaling layer into the encoded signal that the first and the second sub-scaling layer are separately decodable from each other. In contrast to a full-scaling layer, a sub-scaling layer includes only the bits of a certain order of a part of the binary spectral values in the band, so that, by additionally decoding a sub-scaling layer, a more finely controllable and a more finely scalable precision gain may be achieved.
摘要:
A time-discrete audio signal is processed to provide a quantization block with quantized spectral values. Furthermore, an integer spectral representation is generated from the time-discrete audio signal using an integer transform algorithm. The quantization block having been generated using a psychoacoustic model is inversely quantized and rounded to then form a difference between the integer spectral values and the inversely quantized rounded spectral values. The quantization block alone provides a lossy psychoacoustically coded/decoded audio signal after the decoding, whereas the quantization block, together with the combination block, provides a lossless or almost lossless coded and again decoded audio signal in the decoding. By generating the differential signal in the frequency domain, a simpler coder/decoder structure results.
摘要:
A time-discrete audio signal is processed to provide a quantization block with quantized spectral values. Furthermore, an integer spectral representation is generated from the time-discrete audio signal using an integer transform algorithm. The quantization block having been generated using a psychoacoustic model is inversely quantized and rounded to then form a difference between the integer spectral values and the inversely quantized rounded spectral values. The quantization block alone provides a lossy psychoacoustically coded/decoded audio signal after the decoding, whereas the quantization block, together with the combination block, provides a lossless or almost lossless coded and again decoded audio signal in the decoding. By generating the differential signal in the frequency domain, a simpler coder/decoder structure results.
摘要:
In determining a coding block raster on which a decoded signal is based, a segment of the decoded signal is picked out first, said segment beginning at a certain output sampling value of the decoded signal. Said segment is then converted into a spectral representation, whereupon said spectral representation is then evaluated in relation to a predetermined criterion in order to obtain an evaluation result for the segment. This procedure is repeated for a plurality of different segments beginning at different output sampling values each, in order to obtain a plurality of evaluation results. Finally, the plurality of the evaluation results is searched in order to establish the evaluation result that has an extreme value as compared to the other evaluation results, in such a way that it can be assumed that the segment to which this evaluation result is allocated matches the coding block raster on which the decoded signal is based. This method can be used to determine the coding block raster for any decoded signal that has no explicit information about its coding block raster.
摘要:
An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
摘要:
An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
摘要:
An inventive method for introducing information into a data stream including data about spectral values representing a short-term spectrum of an audio signal first performs a processing of the data stream to obtain the spectral values of the short-term spectrum of the audio signal. Apart from that, the information to be introduced are combined with a spread sequence to obtain a spread information signal, whereupon a spectral representation of the spread information is generated which will then be weighted with an established psychoacoustic maskable noise energy to generate a weighted information signal, wherein the energy of the introduced information is substantially equal to or below the psychoacoustic masking threshold. The weighted information signal and the spectral values of the short-term spectrum of the audio signal will then be summed and afterwards processed again to obtain a processed data stream including both audio information and information to be introduced. By the fact that the information to be introduced are introduced into the data stream without changing to the time domain, the block rastering underlying the short-term spectrum will not be touched, so that introducing a watermark will not lead to tandem encoding effects.
摘要:
An inventive method for introducing information into a data stream including data about spectral values representing a short-term spectrum of an audio signal first performs a processing of the data stream to obtain the spectral values of the short-term spectrum of the audio signal. Apart from that, the information to be introduced are combined with a spread sequence to obtain a spread information signal, whereupon a spectral representation of the spread information is generated which will then be weighted with an established psychoacoustic maskable noise energy to generate a weighted information signal, wherein the energy of the introduced information is substantially equal to or below the psychoacoustic masking threshold. The weighted information signal and the spectral values of the short-term spectrum of the audio signal will then be summed and afterwards processed again to obtain a processed data stream including both audio information and information to be introduced. By the fact that the information to be introduced are introduced into the data stream without changing to the time domain, the block rastering underlying the short-term spectrum will not be touched, so that introducing a watermark will not lead to tandem encoding effects.
摘要:
Techniques for introducing information into a data stream first obtains the spectral values of the short-term spectrum of the audio signal. Separately, information to be introduced are combined with a spread sequence obtaining a spread information signal, whereupon a spectral representation of the spread information is generated, then weighted with an established psychoacoustic maskable noise energy to generate a weighted information signal, wherein energy of the introduced information is substantially equal to or below the psychoacoustic masking threshold. The weighted information signal and the spectral values of the short-term spectrum of the audio signal are then summed and afterwards processed again to obtain a processed data stream including audio information and information to be introduced. Because the information to be introduced are introduced without changing to the time domain, the block rastering underlying the short-term spectrum are not touched, thus introducing a watermark will not lead to tandem encoding effects.
摘要:
An inventive method for introducing information into a data stream including data about spectral values representing a short-term spectrum of an audio signal first performs a processing of the data stream to obtain the spectral values of the short-term spectrum of the audio signal. Apart from that, the information to be introduced are combined with a spread sequence to obtain a spread information signal, whereupon a spectral representation of the spread information is generated which will then be weighted with an established psychoacoustic maskable noise energy to generate a weighted information signal, wherein the energy of the introduced information is substantially equal to or below the psychoacoustic masking threshold. The weighted information signal and the spectral values of the short-term spectrum of the audio signal will then be summed and afterwards processed again to obtain a processed data stream including both audio information and information to be introduced. By the fact that the information to be introduced are introduced into the data stream without changing to the time domain, the block rastering underlying the short-term spectrum will not be touched, so that introducing a watermark will not lead to tandem encoding effects.