摘要:
A recommender system may be used to predict a user behavior that a user will give in relation to an item. In an embodiment such predictions are used to enable items to be recommended to users. For example, products may be recommended to customers, potential friends may be recommended to users of a social networking tool, organizations may be recommended to automated users or other items may be recommended to users. In an embodiment a memory stores a data structure specifying a bi-linear collaborative filtering model of user behaviors. In the embodiment an automated inference process may be applied to the data structure in order to predict a user behavior given information about a user and information about an item. For example, the user information comprises user features as well as a unique user identifier.
摘要:
Machine learning techniques may be used to train computing devices to understand a variety of documents (e.g., text files, web pages, articles, spreadsheets, etc.). Machine learning techniques may be used to address the issue that computing devices may lack the human intellect used to understand such documents, such as their semantic meaning. Accordingly, a topic model may be trained by sequentially processing documents and/or their features (e.g., document author, geographical location of author, creation date, social network information of author, and/or document metadata). Additionally, as provided herein, the topic model may be used to predict probabilities that words, features, documents, and/or document corpora, for example, are indicative of particular topics.
摘要:
Managing a portfolio of experts is described where the experts may be for example, automated experts or human experts. In an embodiment a selection engine selects an expert from a portfolio of experts and assigns the expert to a specified task. For example, the selection engine has a Bayesian machine learning system which is iteratively updated each time an experts performance on a task is observed. For example, sparsely active binary task and expert feature vectors are input to the selection engine which maps those feature vectors to a multi-dimensional trait space using a mapping learnt by the machine learning system. In examples, an inner product of the mapped vectors gives an estimate of a probability distribution over expert performance. In an embodiment the experts are automated problem solvers and the task is a hard combinatorial problem such as a constraint satisfaction problem or combinatorial auction.
摘要:
Knowledge corroboration is described. In an embodiment many judges provide answers to many questions so that at least one answer is provided to each question and at least some of the questions have answers from more than one judge. In an example a probabilistic learning system takes features describing the judges or the questions or both and uses those features to learn an expertise of each judge. For example, the probabilistic learning system has a graphical assessment component which aggregates the answers in a manner which takes into account the learnt expertise in order to determine enhanced answers. In an example the enhanced answers are used for knowledge base clean-up or web-page classification and the learnt expertise is used to select judges for future questions. In an example the probabilistic learning system has a logical component that propagates answers according to logical relations between the questions.
摘要:
Machine learning techniques may be used to train computing devices to understand a variety of documents (e.g., text files, web pages, articles, spreadsheets, etc.). Machine learning techniques may be used to address the issue that computing devices may lack the human intellect used to understand such documents, such as their semantic meaning. Accordingly, a topic model may be trained by sequentially processing documents and/or their features (e.g., document author, geographical location of author, creation date, social network information of author, and/or document metadata). Additionally, as provided herein, the topic model may be used to predict probabilities that words, features, documents, and/or document corpora, for example, are indicative of particular topics.
摘要:
Managing a portfolio of experts is described where the experts may be for example, automated experts or human experts. In an embodiment a selection engine selects an expert from a portfolio of experts and assigns the expert to a specified task. For example, the selection engine has a Bayesian machine learning system which is iteratively updated each time an experts performance on a task is observed. For example, sparsely active binary task and expert feature vectors are input to the selection engine which maps those feature vectors to a multi-dimensional trait space using a mapping learnt by the machine learning system. In examples, an inner product of the mapped vectors gives an estimate of a probability distribution over expert performance. In an embodiment the experts are automated problem solvers and the task is a hard combinatorial problem such as a constraint satisfaction problem or combinatorial auction.
摘要:
A recommender system may be used to predict a user behavior that a user will give in relation to an item. In an embodiment such predictions are used to enable items to be recommended to users. For example, products may be recommended to customers, potential friends may be recommended to users of a social networking tool, organizations may be recommended to automated users or other items may be recommended to users. In an embodiment a memory stores a data structure specifying a bi-linear collaborative filtering model of user behaviors. In the embodiment an automated inference process may be applied to the data structure in order to predict a user behavior given information about a user and information about an item. For example, the user information comprises user features as well as a unique user identifier.
摘要:
Online recommendations are tracked through a forwarding service. The forwarding service can provide such statistics to an ad service, which can provide incentives to the recommending user and a consuming user. Example incentives may include an accumulation of points by the recommending user, a discount to the consuming user if a purchase is made in response to the recommendation, etc. To determine how much of an incentive each participant in the recommendation flow receives, a graph is created to model the recommendation flow and incentives are allocated using a cooperative game description based on this graph that associates each participant with a power index that represents that participants share of the incentive.
摘要:
A publishing engine captures capturing commercial events and other information (collectively, “commercial information”) associated with a first user and automatically notifies other users in the social network of the first user of this commercial information. The publishing engine also notifies one or more search engines of these events and information. Based on this commercial information, the search engine can augment search results of the members of the social network to include historical notifications relating to commercial transactions for similar products and/or services by others in their social network. In this manner, for example, the search engine can provide results directing the searcher to other users in their social network who have purchased such products and/or services.
摘要:
A skill scoring frameworks allows for handicapping an individual game player in a gaming environment in preparation of matching the game player with other game players, whether for building teams or assigning competitors, or both. By introducing handicapping into the skill scoring framework, a highly skilled player may select one or more game characteristics (e.g., a less than optimal racing vehicle, reduced character capabilities, etc.) and therefore be assigned a handicap that allows the player to be matched with lower skilled players for competitive game play. Handicaps may apply positively or negatively a player's skill score during the matching stage. Handicaps may also be updated based on the game outcomes of the game play in which they were applied.