Abstract:
A method for transferring information to a remote control includes storing information in a transfer medium, inserting the transfer medium into a remote control that may or may not have already been programmed with information of the same type as that in the transfer medium, inputting the information from the transfer medium, and storing the information from the transfer medium in memory. Another embodiment of the method transfers information between remote controls. A remote control includes a processor, memory, and a transfer medium port. The processor is responsive to a data signal and the port is adapted to receive a transfer medium with information to be transferred to the remote control. The processor stores the information in memory. The remote control may also download information, which is to be transferred to other remote controls, into the transfer medium and the transfer medium may be reused to program additional remote controls.
Abstract:
A method and apparatus for providing therapeutic pulse laser treatment. The treatment method includes delivering more than one therapeutic laser light protocol from a hand held therapeutic laser device according to a preprogrammed schedule. At one or more select times during the preprogrammed schedule, the hand held therapeutic laser device will produce audio output. The audio output provides information to the user and directs him or her to execute a step in the overall treatment plan. For example, the audio output may signal to the user that it is necessary to make a change in or between treatment protocols, move the laser device, pause treatment, or otherwise control the delivery of therapeutic laser light. The ability of a relatively untrained user to implement the method may be enhanced if the audio output is delivered as synthetic speech output.
Abstract:
A pulse laser for therapeutic use including a housing sized to be hand held by an operator. All components of the pulse laser are located within or on the housing. Thus, the present invention is a completely hand held stand alone unit which may be operated without a tethered connection to any apparatus located outside of the housing. The components located within the housing or on the housing include a laser light source, a control circuit configured to cause the laser light source to emit pulsed laser light, and a power supply. The wavelength of light produced by the laser light source may be about 635 nm. The control circuit of the therapeutic pulse laser may provide for multiple user selectable pulse rates. The therapeutic pulse laser may include a semiconductor switch in electrical communication with the control circuit and the laser light source. Ideally, the semiconductor switch will provide for active sourcing of current to the laser light source and active draining of current from the laser light source. The therapeutic pulse laser may also include an apparatus allowing for the exchange of digital information between the pulse laser and an external apparatus such as a database, computer, or second pulse laser unit.