摘要:
An improved process is provided for the production of oxides from hydrocarbons by reaction with oxygen, air or a gas enriched in oxygen relative to air, preferably the latter, in the presence of an oxidation catalyst. An alkane, e.g. propane, is converted to an alkene in a dehydrogenator. The product stream is introduced into an oxidation reactor. The product formed therein is recovered in a quench tower. The gas phase from the quench tower is treated in a PSA unit to form a gaseous stream containing the unreacted alkane, alkene, a minor amount of oxygen, i.e. less than about 2 percent by volume, and nitrogen if present in the feed to the oxidation reactor. The gaseous stream, which may or may not contain hydrogen depending on the adsorbent on the PSA unit, is introduced into a selective oxidation unit to remove the remaining oxygen and then recycled to the dehydrogenator. Hydrogen may be introduced into or removed from the PSA effluent, depending on the function of the adsorbent therein, to obtain an optimum concentration for introduction into the dehydrogenator. A preferred PSA system for use in the subject process comprises two parallel PSA units containing differnt adsorbents such that the gaseous stream formed in one PSA unit contians all of the hydrogen from the gas phase of the quench tower. The feed to the PSA units is divided disaproportionately so that the combined PSA effluent recycle streams contain the optimum concentration of hydrogen for the dehydrogenator.
摘要:
This invention relates to an energy efficient method of vacuum regenerating an adsorbent bed. In a typical process, the adsorbent bed undergoes an adsorption step, a vent step, and a vacuum purge step. According to the present invention, the energy of the usually discarded vent gas is used to raise a dense liquid from a lower tank to a higher tank. The potential energy of the raised liquid, upon returning from the higher tank to the lower tank, is used to generate a vacuum for vacuum regeneration of the adsorbent bed.
摘要:
An improved process is disclosed for argon recovery from an ammonia synthesis plant purge gas stream comprising hydrogen, nitrogen, argon, methane, and ammonia. This purge gas is conventionally subjected to ammonia absorption and a first membrane separation of hydrogen for recycle to the ammonia plant. The hydrogen depleted non-permeate gas stream from the first membrane separator, comprising the aforesaid four components, and any residual moisture from the ammonia absorption, is subjected, according to a first embodiment of the present invention, to the following steps: (i) Separation of methane and residual moisture and most of the nitrogen in the gas stream in a pressure swing adsorption system using molecular sieve or activated carbon material. (ii) Separation of most of the hydrogen in a second membrane separator. The separated hydrogen may be used as purge gas for regeneration of the pressure swing adsorption systems of step (i). (iii) Separation of the nitrogen and residual hydrogen by cryogenic distillation to obtain essentially pure liquid argon product. In a second embodiment, step (ii) above is eliminated and separation of hydrogen is accomplished by cryogenic separation in combination with step (iii). In a third embodiment, separation of most of the hydrogen is accomplished by metal hydride adsorption in place of membrane separation. The present process is equally applicable with minor modifications for the recovery of argon from ammonia synthesis plant purge gas streams, wherein PSA or cryogenic units are employed instead of the first membrane separator, in order to recover hydrogen for recycle to the ammonia synthesis plant.