Abstract:
A system and method for cryogenic purification of a hydrogen, nitrogen, methane and argon containing feed stream to produce a methane free, hydrogen and nitrogen containing synthesis gas and a methane rich fuel gas, as well as to recover an argon product stream, excess hydrogen, and excess nitrogen is provided. The disclosed system and method are particularly useful as an integrated cryogenic purifier in an ammonia synthesis process in an ammonia plant. The excess nitrogen is a nitrogen stream substantially free of methane and hydrogen that can be used in other parts of the plant, recovered as a gaseous nitrogen product and/or liquefied to produce a liquid nitrogen product.
Abstract:
An argon reflux condensation system and method in which a plurality of once-through condensers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the air separation plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Prior to flowing into the once-through condensers, the partially vaporized crude oxygen stream enters a phase separator which separates the crude oxygen vapor from the crude liquid oxygen. The separated crude oxygen vapor bypasses the once-through condensers and is mixed with the vaporized oxygen stream that exits the one-through condensers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.
Abstract:
A method for purifying an argon stream is provided. The method includes pretreating an argon waste stream to remove impurities to provide a pre-treated argon waste stream having argon, nitrogen, and hydrogen; cooling the argon waste stream to create a cold feed stream; and condensing the cold feed stream to create a liquid feed stream. The liquid feed stream is fed to the cryogenic distillation column to create a bottoms argon product stream and a gas waste stream. The bottoms argon product stream travels to an expansion device to provide a cooled bottoms argon product stream, which can optionally be combined with an argon lift stream downstream of the expansion device. The combined argon lift stream and cooled bottoms argon product stream are fed to the overhead condenser and vaporized to create a purified vapor phase argon stream.
Abstract:
The invention relates to a method for producing an argon-enriched fluid and an oxygen-enriched fluid from a fluid resulting from a method for purifying of oxy-fuel combustion fumes, wherein said method comprises purifying the residual gas by a purification method in order to produce a gas enriched with carbon dioxide and a residual gas lean in carbon dioxide, pre-treating the residual gas lean in carbon dioxide in order to obtain a flow enriched with carbon dioxide and a flow lean in carbon dioxide, treating the flow lean in carbon dioxide by a cryogenic technique so as to extract at least an argon-enriched fraction, an oxygen-enriched fraction, and a fraction lean in argon and/or oxygen.
Abstract:
A method and system for the purification and recycle of impure argon is disclosed. The system and process of the present invention can produce very high purity argon, i.e., about 1 ppb or less of impurities. In one embodiment of the invention, a cryogenic separation apparatus is used to remove the nitrogen, hydrocarbon, and hydrogen impurities from the argon stream. A catalyst bed is then operated at ambient temperature to remove hydrogen, oxygen, and carbon monoxide impurities to provide the purified argon product. Also disclosed is a method to minimize to loss of the purified argon product during regeneration of the catalyst bed.
Abstract:
A process for separating nitrogen and hydrocarbons from a mixture of gases by splitting the mixture into a plurality of separate streams and throttling the flow of each stream to achieve a selected variable flow rate therebetween. The plurality of separate streams are individually cooled by exchanging heat with a plurality of different process streams. The cooled streams are combined and expand into a separation column where nitrogen ascends the column and exits as a process stream while hydrocarbon descends the column to a reboiler thereof and exits as a process stream. The reboiler is used for cooling one of the separate streams. The hydrocarbon from the bottom of the column is expanded and used to cool a reflux condenser located inside the column and thereafter cools another of the streams before it is discharged from the process. The nitrogen process stream is used to cool another of the separated streams, and then is discharged from the process.
Abstract:
The present invention is directed to a method for producing carbon dioxide and nitrogen from combustion exhaust gas containing less than about 10% oxygen by weight which comprises the steps of (a) treating the exhaust gas to remove particulate matter, (b) compressing the exhaust gas to a pressure in the range from about 25 psia to about 200 psia, (c) purifying the exhaust gas to remove trace contaminants, (d) separating the exhaust gas to produce a carbon dioxide rich fraction and a nitrogen rich fraction, (e) liquifying the carbon dioxide rich fraction and distilling off volatile contaminants to produce pure carbon dioxide, (f) purifying the nitrogen rich fraction to remove contaminants, and (g) cryogenically fractionally distilling the nitrogen rich fraction to produce pure nitrogen. In another embodiment, the invention is directed to a method for producing carbon dioxide, nitrogen, and argon from a combustion exhaust gas. The combustion exhaust gas in the present invention may be obtained from an ammonia plant reformer furnace and the nitrogen produced may be employed as a synthesis gas in the ammonia reactor.
Abstract:
A process for separating nitrogen and hydrocarbons from a mixture of gases by splitting the mixture into a plurality of separate streams and throttling the flow of each stream to achieve a selected variable flow rate therebetween. The plurality of separate streams and individually cooled by exchanging heat with a plurality of different process streams, then the cooled separate streams are combined, cooled by another process stream, and again cooled by expansion. The cooled combined streams then enter a separation column where nitrogen ascends the column and exits as a process stream while hydrocarbon descends the column to a reboiler therof and exits as another process stream. The reboiler is used for cooling one of the separate streams and is therefore one of the process streams. The hydrocarbon from the column is expanded and used for the processe stream that first cools the combined streams and thereafter cools another of the separate streams and then is discharged from the process. The nitrogen process stream is expanded and used to cool another of the separate streams, and then is discharged from the process. The flow rates are controlled to maintain the throttling of the split streams and the pressure drop across the expansion valves within an optimum range of predetermined values.
Abstract:
A process is disclosed for the purification of a gaseous mixture, for example, consisting essentially of hydrogen and containing impurities, e.g., carbon monoxide, methane and argon. The gaseous mixture is scrubbed with liquid nitrogen in a scrubbing column having two sections. In order to be able to process the residual gases formed during the scrubbing step, containing especially CO, argon and CH.sub.4, in a simple way and without great investment costs, liquid nitrogen is introduced in a quantity sufficient for an almost complete scrubbing out of the carbon monoxide, and a partial amount of the scrubbing liquid, enriched with carbon monoxide, is withdrawn between the upper and lower sections. The partial amount withdrawn is dimensioned so that the residual quantity of scrubbing agent delivered to the lower section of the scrubbing column is enough to scrub out the methane from the gaseous mixture, but yet also leaves a major portion of the carbon monoxide in the gaseous mixture.
Abstract:
A process to recover higher boiling synthesis gas component substantially free of hydrogen comprising partial condensation of a synthesis gas reaction stream, defined stripping of hydrogen out of the resulting liquid, and fractional distillation of the resulting fluid.