摘要:
A set of data symbols is selected from a set of modulation constellation, and a sample-mean of the set of data symbols is determined. Each data symbol is first shifted by the sample-mean to obtain a shifted data symbol, and then the shifted symbol is multiplied by a first constant to obtain a scaled data symbol. A second constant is added to the scaled data symbol to obtain a mapped data symbol. The sample-mean is multiplied by a third constant to obtain a sample-mean mapped symbol. The set of mapped data symbols and the sample-mean mapped symbol are then transmitted as a resource block.
摘要:
Beams are used to communicate in a wireless network including mobile and stationary receivers. The network operates according to the IEEE 802.11p in wireless access to vehicular environments (WAVE). A direction from the mobile transceiver to the stationary receiver is predicted using geographic information available to the mobile transceiver. A set of signals are received in the mobile transceiver from the stationary transceiver, wherein the signals are received by an array of antennas, and wherein the signals are received using a set of beams, and wherein each beam is approximately directed at the stationary receiver. A signal-to-noise ratio (SNR) is measured for each beam, and the beam with an optimal SNR is selected as an optimal beam for communicating data between the mobile transceiver and the stationary transceiver.
摘要:
Channel state information in a closed-loop, multiple-input, multiple-output wireless networks is fed back from each mobile station to a base station by first determining a transmit covariance matrix R, and applying a singular value decomposition (SVD) R=UΣVH, where U, V are left and right singular vector matrices, Σ is a diagonal matrix with singular values. The matrix V includes column vectors V. A beamforming vector vmax=[1 exp(jΦ)exp(j2Φ) . . . exp(jΦ)]/√{square root over (N)}] is approximated by the column vector V having a maximum magnitude, where Φ is a real number. Then, only the angle Φ is fed back using a phase modulation mapping of the components exp(jΦ) onto the associated subcarrier.
摘要:
In an orthogonal frequency division multiplexing (OFDM) network, a set of pseudo random sequences (PRS) are stored at a transmitter and a receiver. Each OFDM symbol is mapped to subcarriers for a set of transmit antennas to produce a mapped symbol. The mapped symbol is encoded using a pseudo-random phase precoder (PRPP) and the PRS to produce a precoded symbol. An inverse fast Fourier transform (IFFT) is applied to the precoded symbol, and the encoded symbol is transmitted to the receiver using the set of transmit antennas.
摘要:
Beams are used to communicate in a wireless network including mobile and stationary receivers. The network operates according to the IEEE 802.11p in wireless access to vehicular environments (WAVE). A direction from the mobile transceiver to the stationary receiver is predicted using geographic information available to the mobile transceiver. A set of signals are received in the mobile transceiver from the stationary transceiver, wherein the signals are received by an array of antennas, and wherein the signals are received using a set of beams, and wherein each beam is approximately directed at the stationary receiver. A signal-to-noise ratio (SNR) is measured for each beam, and the beam with an optimal SNR is selected as an optimal beam for communicating data between the mobile transceiver and the stationary transceiver.
摘要:
In an orthogonal frequency division multiplexing (OFDM) network, a set of pseudo random sequences (PRS) are stored at a transmitter and a receiver. Each OFDM symbol is mapped to subcarriers for a set of transmit antennas to produce a mapped symbol. The mapped symbol is encoded using a pseudo-random phase precoder (PRPP) and the PRS to produce a precoded symbol. An inverse fast Fourier transform (IFFT) is applied to the precoded symbol, and the encoded symbol is transmitted to the receiver using the set of transmit antennas.
摘要:
A set of data symbols is selected from a set of modulation constellation, and a sample-mean of the set of data symbols is determined. Each data symbol is first shifted by the sample-mean to obtain a shifted data symbol, and then the shifted symbol is multiplied by a first constant to obtain a scaled data symbol. A second constant is added to the scaled data symbol to obtain a mapped data symbol. The sample-mean is multiplied by a third constant to obtain a sample-mean mapped symbol. The set of mapped data symbols and the sample-mean mapped symbol are then transmitted as a resource block.
摘要:
Channel state information in a closed-loop, multiple-input, multiple-output wireless networks is fed back from each mobile station to a base station by first determining a transmit covariance matrix R, and applying a singular value decomposition (SVD) R=UΣVH, where U, V are left and right singular vector matrices, Σ is a diagonal matrix with singular values. The matrix V includes column vectors V. A beamforming vector vmax=[1 exp(jΦ)exp(j2Φ) . . . exp(jΦ)]/√{square root over (N)}] is approximated by the column vector V having a maximum magnitude, where Φ is a real number. Then, only the angle Φ is fed back using a phase modulation mapping of the components exp(jΦ) onto the associated subcarrier.
摘要:
A method estimates a wireless channel at a receiver. The signal is transmitted using narrowband orthogonal frequency division demultiplexing (OFDM) and frequency subcarriers, and the signal includes a set of data tones and a set of pilot tones. The channel and pilot tone interference are estimated based on all the pilot tones extracted from the signal and a channel model. The set of data are equalized based on the channel estimate. Data interference is detected according to the pilot interference and the equalized data tones. Subcarrier interference-to-noise ratios are determined based on the data interference. Signal strengths of the data tones are determined based on the equalized data tones, log-likelihood ratios of bits represented by the data tones are determined based on the subcarrier interference-to-noise ratios and the signal strength of the data tones.
摘要:
A transmitter encodes an input bitstream using space-time trellis coding (STTC). The encoder includes a serial to parallel convertor to produce a first and second output bitstreams. First and second three bit shift registers are connected to produce first and second output bitstreams. A multiplier applies a code generating weight to each bit of the shift registers to encode the bitstreams. A first switch is connected between a last bit of the first shift register and a first bit of the second shift register. A second switch is connected between the second output and the first bit of the second shift register. The first set of encoded bit streams and the second set of encoded bitstreams are combined and mapped to a frequency domain.