摘要:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A method of making an applicator liquid containing nanotubes for use in an electronics fabrication process includes characterizing an electronic fabrication process according to fabrication compatible solvents and allowable levels of metallic and particle impurities; providing nanotubes that satisfy the allowable impurities criteria for the electronics fabrication process; providing a solvent that meets the fabrication compatible solvents and allowable impurities criteria for the electronic fabrication process; and dispersing the nanotubes into the solvent at a concentration of at least one milligram of nanotubes per liter solvent to form an applicator liquid.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid containing nanotubes for use in an electronics fabrication process includes a solvent containing a plurality of nanotubes. The nanotubes are at a concentration of greater than 1 mg/L. The nanotubes are pretreated to reduce the level of metallic and particulate impurities to a preselected level, and the preselected metal and particulate impurities levels are selected to be compatible with an electronics manufacturing process. The solvent also is selected for compatibility with an electronics manufacturing process.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
摘要翻译:描述了一些可旋涂的液体和应用技术,其可以用于形成纳米管膜或受控特性的织物。 用于形成纳米管膜的可旋涂液体包括含有受控浓度的纯化纳米管的液体介质,其中所述受控浓度足以形成预定浓度和均匀性的纳米管织物或膜,并且其中所述可旋涂液体包含 小于1×10 18原子/ cm 3的金属杂质。 可旋涂的液体基本上不含直径大于约500nm的颗粒杂质。
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
摘要:
Certain applicator liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in ethyl lactate. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A method of making an applicator liquid containing nanotubes for use in an electronics fabrication process includes characterizing an electronic fabrication process according to fabrication compatible solvents and allowable levels of metallic and particle impurities; providing nanotubes that satisfy the allowable impurities criteria for the electronics fabrication process; providing a solvent that meets the fabrication compatible solvents and allowable impurities criteria for the electronic fabrication process; and dispersing the nanotubes into the solvent at a concentration of at least one milligram of nanotubes per liter solvent to form an applicator liquid.
摘要:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.