摘要:
A method for forming an RF inductor of helical shape having high Q and minimum area. The inductor is fabricated of metal or damascened linear segments formed on three levels of intermetal dielectric layers and interconnected by metal filled vias to form the complete helical shape with electrical continuity.
摘要:
A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures. A second iteration features the exposure of specific regions of an underlying metal layer, to a UV, or to an I line exposure procedure, performed in an oxidizing ambient, with the regions of an underlying metal layer exposed to the UV or I line procedure, via clear regions in an overlying photolithographic plate. This procedure also results in the formation of a high K layer, on a top portion of the underlying metal layer.
摘要:
A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures. A second iteration features the exposure of specific regions of an underlying metal layer, to a UV, or to an I line exposure procedure, performed in an oxidizing ambient, with the regions of an underlying metal layer exposed to the UV or I line procedure, via clear regions in an overlying photolithographic plate. This procedure also results in the formation of a high K layer, on a top portion of the underlying metal layer.
摘要:
A method for fabricating a metal-insulator-metal capacitor wherein top metal corner shaping during patterning is eliminated is described. An insulating layer is provided overlying a semiconductor substrate. A first metal layer is deposited over the insulating layer. A capacitor dielectric layer is deposited overlying the first metal layer. A second metal layer is deposited overlying the capacitor dielectric layer and patterned to form a top metal electrode. A flowable material layer is deposited overlying the capacitor dielectric and the top metal electrode and anisotropically etched away to leave spacers on sidewalls of the top metal electrode. A photoresist mask is formed overlying the capacitor dielectric and the top metal electrode wherein the spacers provide extra photoresist thickness at the sidewalls of the top metal layer. The capacitor dielectric layer and the first metal layer are patterned wherein the patterned first metal layer forms a bottom metal electrode and wherein the spacers protect the top metal layer from etching during the patterning. The photoresist mask is removed, completing fabrication of a metal-insulator-metal capacitor.