摘要:
A magnetic device mounting system is disclosed, such as for use in electrical cabinets for distribution of power via power bus bars. The system includes a common mode magnetic device that has an opening configured to receive extensions of a set of parallel bus bars. A non-conductive support is provided, along with a conductive extension, the non-conductive support and extension being configured to coordinate to engage the opening and to support the common mode magnetic device via attachment to the bus bar.
摘要:
Embodiment relate to an extruded high power electrical distribution. The bus can be employed in a MCC, a drive cabinet, or any such electrical enclosure to facilitate transmission of power. A body of the bus includes an elongate metal extrusion with first and second ridges extending along a length of the body from opposite edges of the body. Further, the bus includes a first groove and a second groove extending along the length of the body and into the body from a face of the body such that each of the first and second grooves comprises a cross-section having a narrow passage extending from the face into a broader cavity within the body. Additionally, the bus includes machined openings into each groove, wherein each of the machined openings is wider than the width of the corresponding groove to which it provides access.
摘要:
The present invention relates generally to efficiently cooling converter and inverter components of a drive system in accordance with present embodiments. More specifically, present techniques relate to a motor drive duct system that facilitates efficient cooling and access to motor drive components. The motor drive duct system includes duct channel paths that are parallel and adjacent to one another. These channels are formed by various duct segments coupled together or integrated to form the duct system. In particular, the duct system includes a converter section that houses a converter heat sink, an inverter section that houses an inverter heat sink, an exhaust section, and an air inlet section. The air inlet section may include a blower for blowing cooling air through the duct channel paths of the converter and inverter sections. The converter section and the inverter section are configured to be attached and detached from each other at end sections that are angled to receive one another. Further, the inverter section, converter section, and air inlet section are configured to roll into and out of a cabinet, which facilitates access to field wiring.
摘要:
The present disclosure is generally directed to efficiently cooling converter and inverter components of a drive system. Present techniques relate to a motor drive duct system that facilitates efficient cooling and access to motor drive components. The motor drive duct system includes duct channel paths that are parallel and adjacent to one another. The duct system includes a converter section that houses a converter heat sink, an inverter section that houses an inverter heat sink, an exhaust section, and an air inlet section. The converter section and the inverter section are configured to be attached and detached from each other at end sections that are angled to receive one another. Further, the inverter section, converter section, and air inlet section are configured to roll into and out of a cabinet, which facilitates access to field wiring.
摘要:
A power tool motor housing rotates a spindle assembly which moves axially within limits of adjusting nuts. A sensing sleeve maintains an axially fixed position with respect to the drive housing and thus with respect to a depth adjustment for controlling axial movement of the spindle. A foot piece moves along the sleeve as an adjusting nut is rotated on the sleeve to adjust stand off without changing preset depth of cut. A swivel assembly connects the sensing sleeve to the power housing so that the power housing may be rotated or indexed without changing the distance between the sensing sleeve and the depth adjustment.
摘要:
The present invention relates generally to tuning the flow of cooling air across converter and inverter heat sinks in a motor drive system. More specifically, present techniques relate to motor drive duct systems having parallel cooling air duct channels dedicated to providing cooling air for a converter heat sink and an inverter heat sink, respectively. In particular, a first duct channel through an inverter duct and a converter duct is dedicated to providing cooling air to the converter heat sink without cooling the inverter heat sink, whereas a second duct channel through the inverter duct and the converter duct is dedicated to providing cooling air to the inverter heat sink without cooling the converter heat sink.
摘要:
A power drill system is disclosed which is hand held and manually operable. The drill system includes a drill and a positive feed unit for the drill connected thereto. A clamping member is connected at a lower portion thereof to a housing for the drill and feed unit. The clamp member is pneumatically powered to move it against a workpiece and clamp it against the housing at the location of the drill. A four way toggle switch controls the air pressure to the clamp member allowing the operator to control the clamping operation with one hand while the other hand holds the housing in the desired position.
摘要:
The present invention relates generally to tuning the flow of cooling air across converter and inverter heat sinks in a motor drive system. More specifically, present techniques relate to motor drive duct systems having parallel cooling air duct channels dedicated to providing cooling air for a converter heat sink and an inverter heat sink, respectively. In particular, a first duct channel through an inverter duct and a converter duct is dedicated to providing cooling air to the converter heat sink without cooling the inverter heat sink, whereas a second duct channel through the inverter duct and the converter duct is dedicated to providing cooling air to the inverter heat sink without cooling the converter heat sink. A guide vane adjacent to the inverter duct may control the flow of cooling air from a blower between the first and second duct channels. In addition, the inverter duct and the converter duct may both include baffled walls that direct cooling air into contact with the inverter heat sink and the converter heat sink, respectively, such that temperature gradients across the heat sinks are minimized.