摘要:
Methods and apparatus for selecting a serving sector in a high rate data (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which a sector of an Access Point may send data packets to an Access Terminal. The sector is selected by the Access Terminal to achieve the highest data throughput while maintaining a targeted packet error rate. The Access Terminal employs various methods to evaluate quality metrics of forward and reverse links from and to different sectors, and uses the quality metrics to select the sector to send data packets to the Access Terminal.
摘要:
In a disclosed embodiment, signal levels of the active sectors of an access terminal are compared with the signal level of the current serving sector of the access terminal. Next, a delta credit is accumulated. If a DRC lock bit is available, then an accumulated total credit is authorized to produce an authorized accumulated total credit. Afterwards, a new serving sector is identified from a pool of candidate sectors based on the signal levels of the active sectors and the authorized accumulated total credits.
摘要:
An apparatus for selecting a best serving sector in a code division multiple access (CDMA) communication system. A comparator compares a plurality of signal levels received from a plurality of active sectors with a signal level of a current serving sector to produce a difference. A delta generator is coupled to the comparator that generates a delta credit for each of the plurality of active sectors based on the difference. An accumulator is coupled to the delta generator and accumulates a plurality of delta credits to produce an accumulated total credit. A best sector identifier that is coupled to the accumulator identifies the best serving sector from the accumulated total credit.
摘要:
A method and an apparatus for quick retransmission of signals in a communication system are disclosed. A transmitting terminal, e.g., a base station, transmits signals in a form of packets to a receiving terminal, e.g., a subscriber station. The receiving terminal determines if the packet was intended for the receiving terminal, and if so, the receiving terminal demodulates the packet. The receiving terminal then computes a quality metric of the packet, and compares the computed quality metric with a quality metric contained in the packet. If the quality metrics match, the packet is declared correctly received, and is forwarded for further processing. If the quality metrics fail to match, the receiving terminal sends a request for retransmission of the packet. The transmitting terminal determines which packet needs to be retransmitted based on the request for retransmission. The transmitting terminal then schedules the packet for retransmission.
摘要:
In a high data rate communication system capable of variable rate transmission, an open loop rate control can be adjusted with a closed loop rate control to maximize throughput. An access point generates interleaved multi-slot packets that allow an access terminal to transmit indicator messages to the access point in accordance with recently received data carried within slots of the multi-slot packets.
摘要:
In a high data rate communication system capable of variable rate transmission, an open loop rate control can be adjusted with a closed loop rate control to maximize throughput. An access point generates interleaved multi-slot packets that allow an access terminal to transmit indicator messages to the access point in accordance with recently received data carried within slots of the multi-slot packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
A pilot reference transmission scheme well suited for high data rate wireless communication systems is disclosed. To maximize the amount of interference from transmissions from neighboring transmission sources (e.g., access points or base stations) during the pilot interval, and hence minimize the amount of interference from non-transmitting sources during the data intervals, the pilot references are transmitted in bursts at predetermined time intervals, and the pilot bursts from the access points are synchronized. This results in maximum interference contributions from non-transmitting neighboring access points, facilitating reliable estimation of worst case carrier-to-interference (C/I), and further allows the receiving devices (e.g., access terminals) to easily recognize the bursts as pilot reference. In one embodiment, each access point transmits the pilot bursts at or near its maximum transmit power level and no user-specific data is transmitted during the pilot bursts.