摘要:
An autonomous management cluster of network elements serves as a distributed configuration repository. Network elements sharing a common pre-determined shared identifier autonomously form themselves as a management cluster. The network elements in the cluster exchange configuration files. In the event of a loss, destruction, or corruption of one of the network element's configuration file, the network element recovers its configuration file from its closest neighbor in its management cluster. The management cluster can also be used to efficiently disseminate configuration changes by simply communicating the changes to one or more elements in the cluster, and allowing the other nodes in the cluster to discover and retrieve their updated configuration files.
摘要:
A system, a network node, a router, a method and a program used to determine a bottleneck bandwidth on a multi-hop path between a source and destination node is presented. The method comprises receiving probe packets by a first hop node in the multi-hop path, measuring a bandwidth on a link between the first hop node and a next hop node in the multi-hop path, generating a bandwidth discovery packet including the measured bandwidth, transmitting the BDP to the next hop node, relaying the probe packets to the next hop node, and determining if the next hop node is a last-hop node on the multi-hop path. A last hop node records the measured bandwidth from the BDP, adjusts the delay between the probe packets based upon the bandwidth and relaying the probe packets to the destination node. The destination node determines the bottleneck bandwidth based on the delay between the probe packets.
摘要:
A bridge protocol for controlled information transfer between encrypted and unencrypted networks—and vice versa—by utilizing successive packets of a flow wherein messages are spread across multiple packets and may therefore collectively convey far greater information than is possible in individual per-packet DiffServ Code Points (DSCPs), as practiced in the current art. In a first preferred embodiment the bridge protocol utilizes IPv6 DSCPs in successive packets to provide messages having a length of up to 6n bits in length where n is the number of DSCPs comprising the IPv6 bridge protocol message. In an alternative embodiment, the bridge protocol utilizes DSCPs in successive packets of an IPv4 flow to provide messages having a length of up to 5n bits in length where n is the number of DSCPs comprising the IPv4 bridge protocol message. It further utilizes the DSCP in the last packet of the IPv4 flow to mark the end of the flow. For security purposes, both embodiments include multiple safeguards to prohibit passage of unauthorized information across encryption boundaries.
摘要:
A system, a network node, a router, a method and a program used to determine a bottleneck bandwidth on a multi-hop path between a source and destination node is presented. The method comprises receiving probe packets by a first hop node in the multi-hop path, measuring a bandwidth on a link between the first hop node and a next hop node in the multi-hop path, generating a bandwidth discovery packet including the measured bandwidth, transmitting the BDP to the next hop node, relaying the probe packets to the next hop node, and determining if the next hop node is a last-hop node on the multi-hop path. A last hop node records the measured bandwidth from the BDP, adjusts the delay between the probe packets based upon the bandwidth and relaying the probe packets to the destination node. The destination node determines the bottleneck bandwidth based on the delay between the probe packets.