摘要:
The present invention provides a food transport system comprising a conveyor including a controller that controls the movement of plates of food around the conveyor and determines the circulation time of each plate of food, a food heater and food cooler. The controller automatically diverts individual plates of food to the food heater if they require reheating and automatically diverts individual plates of food to the food cooler if they require cooling.
摘要:
A method and wireless device merge multiple unsynchronized beacon groups in a wireless network, each beacon group including at least one wireless device. A first beacon is received from at least one first wireless device in a first beacon group (S514), the first wireless device having a first directional antenna. A second beacon is received from at least one second wireless device in a second beacon group that is not synchronized with the first beacon group (S516), the second wireless device having a second directional antenna. A first response beacon is relocated (S520) and sent (S522) to the first wireless device in the first beacon group. The relocated first response beacon instructs the first wireless device to relocate the first beacon. Accordingly, the second beacon, the relocated first response beacon, and the relocated first beacon are synchronized.
摘要:
A method (400) for coordinating access to a wireless medium among multiple co-located body area networks (BANs). The method comprises detecting, by a master device of a first BAN, at least one alien BAN using beacons received from at least one co-located BAN, wherein an alien BAN is a BAN having its round start time (RST) misaligned with a RST of the first BAN (S410); recording a RST offset between the first BAN and the at least one alien BAN (S420); based on the RST offset determining which of the first BAN and the at least one alien BAN is an initiator BAN and which is a target BAN (S430); and realigning the RST of the initiator BAN with the RST of the target BAN (S460).
摘要:
A method for transferring data among devices in a body area network (BAN). The method comprises dividing an access time to a wireless medium of the BAN into at least a contention-based period (510) and a contention-free reservation period (520); allowing devices to transfer data during the contention-based period using a local prioritized contention access (LPCA) mechanism; and allowing only devices having reserved time slots to transfer data during the contention-free reservation period (520).
摘要:
A method (300) for pre-empting data transmissions in a discovery channel. The method comprises scanning the discovery channel to detect at least one data beacon transmitted in beacon slots (230) of a superframe (S310); determining if at least one data beacon was detected (S320); and transmitting a pre-empt beacon if the at least one data beacon was detected (S330).
摘要:
A method and apparatus discover hidden wireless devices in a wireless network using a directional antenna system, preventing partitioning of the wireless network. A first wireless device located in a first antenna sector is joined in response to an initial first beacon. First beacons are received from the joined first wireless device during corresponding first beacon periods. At least a second antenna sector is scanned during at least one first beacon period to listen for second beacons from a second wireless device in the second antenna sector, while remaining joined with the first wireless device. The first beacons are not received while the second antenna sector is scanned. The second wireless device is joined in response to an initial second beacon. Second beacons are then received from the joined second wireless device during corresponding second beacon periods, and the first beacons are received during the corresponding first beacon periods.
摘要:
A method (400) for scheduling transmissions of global beacons in a body area network (BAN). The BAN includes master nodes and slave nodes where master nodes are arranged in a tree topology. The method comprises propagating ascending global beacons (AGBs) from leaf nodes to a root node of the tree during an ascending period (S420), wherein an AGB includes at least reservations of time slots during a time round; processing AGBs by the root node to determine time slot occupancy information (S430); propagating descending global beacons (DGBs) from the root node to leaf nodes during a descending period (S440), wherein a DGB includes at least reservations of time slots during the time round; and processing DGBs by master nodes other than the root node to update at least the slot occupancy information included in the DGBs (S450).
摘要:
A device, system and method in which data in a write cache, that must at some point be written to non-volatile memory, is written to non-volatile memory after expiration of a threshold time period during which no new host commands are received. If either the last dirty entry is written back or a host command is received during the write-back process, the time threshold time period and auto-flush process is restarted.
摘要:
According to one exemplary embodiment, a differential varactor circuit for a voltage controlled oscillator having two differential outputs includes a first varactor having first and second terminals and a second varactor having first and second terminals. In the differential varactor circuit, each of the first and second terminals of the first varactor and each of the first and second terminals of the second varactor are coupled to one of the two differential outputs of the voltage controlled oscillator, thereby allowing a size of each of the first and second varactors to be reduced so as to increase varactor quality factor. Each of the first and second terminals of the first varactor can be coupled to one of the two differential outputs by a capacitor, and each of the first and second terminals of the second varactor can be coupled to one of the two differential outputs by a capacitor.
摘要:
In one embodiment, a passive optical network is provided that includes: an optical line terminal (OLT) configured to transmit a plurality of downstream signals into a corresponding plurality of passive optical networks and to receive a corresponding plurality of upstream signals from the plurality of passive optical networks, wherein each downstream signal is separated in wavelength from the remaining wavelength signals, and wherein each upstream signal is separated in wavelength from the remaining upstream signal; a Mux/Demux configured to multiplex the downstream signals from the OLT into a optical fiber and to demultiplex upstream signals from the optical fibers to the OLT; and a splitter configured to split the downstream signals from the OLT to a plurality of optical network units such that each optical network unit receives the plurality of downstream signals.