摘要:
A telecommunication system uses a dynamic bandwidth allocation (DBA) algorithm based on current load conditions for controlling transmissions to a plurality of access modules of an access node in order to achieve a fair allocation of network bandwidth at the access node. As an example, access modules at an access node communicate via a control channel with dynamic bandwidth allocation (DBA) logic that receives load information from each of the access modules. Using such load information, the DBA logic dynamically controls the upstream data rates so that a fair allocation of network bandwidth is achieved across all of the access modules. Specifically, the data rates are controlled such that packet flows for services of the same class achieve the same or similar performance (e.g., average data rate) regardless of which access module is receiving each respective packet flow.
摘要:
A telecommunication system uses a dynamic bandwidth allocation (DBA) algorithm based on current load conditions for controlling transmissions to a plurality of access modules of an access node in order to achieve a fair allocation of network bandwidth at the access node. As an example, access modules at an access node communicate via a control channel with dynamic bandwidth allocation (DBA) logic that receives load information from each of the access modules. Using such load information, the DBA logic dynamically controls the upstream data rates so that a fair allocation of network bandwidth is achieved across all of the access modules. Specifically, the data rates are controlled such that packet flows for services of the same class achieve the same or similar performance (e.g., average data rate) regardless of which access module is receiving each respective packet flow.
摘要:
The present disclosure generally pertains to systems and methods for communicating data. In one exemplary embodiment, a system has a high-speed channel, such as an optical fiber, between a network facility, such as a central office (CO), and a first intermediate point between the network facility and a plurality of customer premises (CP). Digital communication links, such as DSL links, are used to carry data between the first intermediate point, such as a feeder distribution interface (FDI), and a second intermediate point, such as the Distribution Point (DP). Non-shared links may then carry the data from the second intermediate point to the CPs. The links between the two intermediate points are bonded to create a high-speed, shared data channel that permits peak data rates much greater than what would be achievable without bonding. In some embodiments, multicast data flows may be prioritized and transmitted across a set of connections to each of the intermediate points. In addition, it is possible to power components at the intermediate points from one or more of the CPs.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
摘要:
Fractional bit rate encoding in a pulse amplitude modulation (PAM) communication environment allows the transmission of fractional bit rates, thus maximizing the use of signal-to-noise ratio (SNR) available on a communication channel. The invention allows the transmission of fractional bit rates in a PAM transceiver, thus allowing the encoding and transmission of a fractional number of bits on each PAM transmit symbol. By encoding a non-integer number of bits, a non power-of-two number of PAM levels can be encoded.
摘要:
In a simultaneous voice and data communications system, a voice signal is mapped into an N-dimensional signal space constellation as a vector, and added to a reference signal point, i.e., a data symbol, where the data symbol is selected from a constellation of data symbols every signaling interval as a function of a data signal. The constellation signal space is further divided into a number of shaped regions, where each region is associated with a different one of the data symbols. The shape of each region is selected as a function of the characteristics of the voice, or audio, signal. In particular, each region illustratively has a rectangular shape.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
摘要:
A number of arrangements and methods that achieve concurrent communication of analog information and digital information. In general terms, when the communication channel is viewed as a multi-dimensional space, the digital information signal is divided into symbols, and the symbols are mapped onto the signal space with a preset distance between them. The analog signal, generally limited in magnitude to less than half the distance separating the symbols, is converted to component signals and added (i.e., vector addition) to the symbols. The sum signal is then transmitted to the receiver where the symbols are detected and subtracted from the received signal to yield the analog signal components. The transmitted analog signal is recreated from those components. Arrangements utilizing the above principles are applications where systems that include a digital port can benefit from an analog communication channel, and conversely, where systems that include an analog port can benefit from a digital communication channel.
摘要:
A telecommunication system employs dynamic shaping across a plurality of access modules of an access node using a dynamic bandwidth allocation (DBA) algorithm that is based on current load conditions for each of the access modules in order to achieve a fair allocation of network bandwidth at the access node. In one exemplary embodiment, access modules at an access node communicate via a control channel with shaper control logic that receives load information from each of the access modules. Using such load information, the shaper control logic dynamically controls the shaper rates for the access modules so that a fair allocation of network bandwidth is achieved across all of the access modules. Specifically, the shaper rates are controlled such that packet flows for services of the same class achieve the same or similar performance (e.g., average data rate) regardless of which access module is communicating each respective packet flow.